The New Palgrave Dictionary of Economics

2018 Edition
| Editors: Macmillan Publishers Ltd

Proportional Hazard Model

  • Jerry A. Hausman
  • Tiemen M. Woutersen
Reference work entry
DOI: https://doi.org/10.1057/978-1-349-95189-5_2625

Abstract

This article reviews proportional hazard models and how the thinking about identification and estimation of these models has evolved since the mid-1970s.

Keywords

Baseline hazard Convergence Duration dependence Duration measurements Duration models Gamma distribution Heterogeneity Mixed proportional hazard (MPH) model Partial likelihood estimators Proportional hazard models Semiparametric estimation Time-Varying regressors Weibull model 
This is a preview of subscription content, log in to check access

Bibliography

  1. Baker, M., and A. Melino. 2000. Duration dependence and nonparametric heterogeneity: A Monte Carlo study. Journal of Econometrics 96: 357–393.CrossRefGoogle Scholar
  2. Bijwaard, G., and G. Ridder. 2002. Efficient estimation of the semi-parametric mixed proportional hazard model. Working paper.Google Scholar
  3. Cox, D. 1972. Regression models and life tables (with discussion). Journal of the Royal Statistical Society B 34: 187–220.Google Scholar
  4. Elbers, C., and G. Ridder. 1982. True and spurious duration dependence: The identifiability of the proportional hazard model. Review of Economic Studies 49: 402–409.CrossRefGoogle Scholar
  5. Hahn, J. 1994. The efficiency bound of the mixed proportional hazard model. Review of Economic Studies 61: 607–629.CrossRefGoogle Scholar
  6. Han, A., and J. Hausman. 1990. Flexible parametric estimation of duration and competing risk models. Journal of Applied Econometrics 6: 1–28.CrossRefGoogle Scholar
  7. Hausman, J., and T. M. Woutersen. 2005. Estimating a semi-parametric duration model without specifying heterogeneity. Working paper, UCL: CeMMAP, Institute for Fiscal Studies.Google Scholar
  8. Heckman, J. 1991. Identifying the hand of the past: Distinguishing state dependence from heterogeneity. American Economic Review 81: 75–79.Google Scholar
  9. Heckman, J., and B. Singer. 1984. A method for minimizing the impact of distributional assumptions in econometric models for duration data. Econometrica 52: 271–320.CrossRefGoogle Scholar
  10. Honoré, B. 1990. Simple estimation of a duration model with unobserved heterogeneity. Econometrica 58: 453–473.CrossRefGoogle Scholar
  11. Honoré, B. 1993a. Identification results for duration models with multiple spells or time-varying regressors. Northwestern working paper.Google Scholar
  12. Honoré, B. 1993b. Identification results for duration models with multiple spells. Review of Economic Studies 60: 241–246.CrossRefGoogle Scholar
  13. Horowitz, J. 1996. Semiparametric estimation of a regression model with an unknown transformation of the dependent variable. Econometrica 64: 103–107.CrossRefGoogle Scholar
  14. Horowitz, J. 1999. Semiparametric estimation of a proportional hazard model with unobserved heterogeneity. Econometrica 67: 1001–1028.CrossRefGoogle Scholar
  15. Ishwaran, H. 1996a. Identifiability and rates of estimation for scale parameters in location mixture models. Annals of Statistics 24: 1560–1571.CrossRefGoogle Scholar
  16. Ishwaran, H. 1996b. Uniform rates of estimation in the semiparametric Weibull mixture model. Annals of Statistics 24: 1572–1585.CrossRefGoogle Scholar
  17. Kiefer, J., and J. Wolfowitz. 1956. Consistency of maximum likelihood estimator in the presence of infinitely many incidental parameters. Annals of Mathematical Statistics 27: 887–906.CrossRefGoogle Scholar
  18. Lancaster, T. 1979. Econometric methods for the duration of unemployment. Econometrica 47: 939–956.CrossRefGoogle Scholar
  19. Lancaster, T. 1990. The econometric analysis of transition data. Cambridge: Cambridge University Press.Google Scholar
  20. Lancaster, T., and S. Nickell. 1980. The analysis of re-employment probabilities for the unemployed. Journal of the Royal Statistical Society, A 143: 141–165.CrossRefGoogle Scholar
  21. Meyer, B. 1990. Unemployment insurance and unemployment spells. Econometrica 58: 757–782.CrossRefGoogle Scholar
  22. Nielsen, G., R. Gill, P. Andersen, and T. Sørensen. 1992. A counting process approach to maximum likelihood estimation in frailty models. Scandanavian Journal of Statistics 19: 25–43.Google Scholar
  23. Ridder, G. 1990. The non-parametric identification of generalized accelerated failure time models. Review of Economic Studies 57: 167–182.CrossRefGoogle Scholar
  24. Ridder, G., and T. Woutersen. 2003. The singularity of the information matrix of the mixed proportional hazard model. Econometrica 71: 1579–1589.CrossRefGoogle Scholar
  25. Van den Berg, G. 2001. Duration models: Specification, identification, and multiple duration. In Handbook of econometrics, ed. J. Heckman and E. Leamer, Vol. 5. Amsterdam: North-Holland.Google Scholar

Copyright information

© Macmillan Publishers Ltd. 2018

Authors and Affiliations

  • Jerry A. Hausman
    • 1
  • Tiemen M. Woutersen
    • 1
  1. 1.