The New Palgrave Dictionary of Economics

2018 Edition
| Editors: Macmillan Publishers Ltd

Measurement Error Models

  • Han Hong
Reference work entry
DOI: https://doi.org/10.1057/978-1-349-95189-5_2619

Abstract

Measurement error is important in econometric analysis. Its presence causes inconsistent parameter estimates. Under the classical measurement error assumption, instrumental variable methods can be used to eliminate the bias caused by measurement errors using a second measurement. This technique can be extended to polynomial regression models. For nonlinear models, deconvolution methods have been developed to cope with classical measurement errors. When the classical measurement error assumption is violated, auxiliary data-sets are usually needed to provide additional source of identification. When the true variable takes only discrete values, the mismeasurement problem takes the form of misclassification and requires special techniques.

Keywords

Attenuation bias Auxiliary data Deconvolution method Generalized method of moments Instrumental variables Inverse probability weighting estimation Linear models Measurement error models Misclassification Nonlinear models Permanent-income hypothesis Polynomial regression Semiparametric method Sieve estimator 

JEL Classifications

C10 
This is a preview of subscription content, log in to check access.

Notes

Acknowledgments

The author acknowledges generous research support from the NSF (SES-0452143) and the Sloan Foundation.

Bibliography

  1. Abrevaya, J., J. Hausman, and F. Scott-Morton. 1998. Identification and estimation of polynomial errors-in-variables models. Journal of Econometrics 87: 239–269.CrossRefGoogle Scholar
  2. Bollinger, C. 1998. Measurement error in the current population survey: A nonparametric look. Journal of Labor Economics 16: 576–594.CrossRefGoogle Scholar
  3. Bound, J., C. Brown, G. Duncan, and W. Rodgers. 1994. Evidence on the validity of cross-sectional and longitudinal labor market data. Journal of Labor Economics 12: 345–368.CrossRefGoogle Scholar
  4. Bound, J., and A. Krueger. 1991. The extent of measurement error in longitudinal earnings data: Do two wrongs make a right. Journal of Labor Economics 12: 1–24.CrossRefGoogle Scholar
  5. Carroll, R., and M. Wand. 1991. Semiparametric estimation in logistic measurement error models. Journal of the Royal Statistical Society 53: 573–585.Google Scholar
  6. Chen, X., H. Hong, and E. Tamer. 2005. Measurement error models with auxiliary data. Review of Economic Studies 72: 343–366.CrossRefGoogle Scholar
  7. Chen, X., Hong, H. and Tarozzi, A. 2004. Semiparametric efficiency in GMM models nonclassical measurement errors. Working paper, Duke University and New York University.Google Scholar
  8. Devereux, P. and Tripathi, G. 2005. Combining datasets to overcome selection caused by censoring and truncation in moment bases models. Working paper, University of Connecticut and UCLA.Google Scholar
  9. Friedman, M. 1957. A theory of the consumption function. Princeton: Princeton University Press.Google Scholar
  10. Frish, R. 1934. Statistical confluence study. Oslo: University Institute of Economics.Google Scholar
  11. Hahn, J. 1998. On the role of propensity score in efficient semiparametric estimation of average treatment effects. Econometrica 66: 315–332.CrossRefGoogle Scholar
  12. Hausman, J., H. Ichimura, W. Newey, and J. Powell. 1991. Measurement errors in polynomial regression models. Journal of Econometrics 50: 271–295.CrossRefGoogle Scholar
  13. Hirano, K., G. Imbens, and G. Ridder. 2003. Efficient estimation of average treatment effects using the estimated propensity score. Econometrica 71: 1161–1189.CrossRefGoogle Scholar
  14. Hong, H., and E. Tamer. 2003. A simple estimator for nonlinear error in variable models. Journal of Econometrics 117: 1–19.CrossRefGoogle Scholar
  15. Imbens, G., Newey, W. and Ridder, G. 2005. Mean-squared-error calculations for average treatment effects. Working paper, Harvard University, MIT and USC.Google Scholar
  16. Lee, L., and J. Sepanski. 1995. Estimation of linear and nonlinear errors-in-variables models using validation data. Journal of the American Statistical Association 90(429): 130–140.CrossRefGoogle Scholar
  17. Li, T. 2002. Robust and consistent estimation of nonlinear errors-in-variables models. Journal of Econometrics 110: 1–26.CrossRefGoogle Scholar
  18. Mahajan, A. 2006. Identification and estimation of regression models with misclassification. Econometrica 74: 631–665.CrossRefGoogle Scholar
  19. Manski, C., and J. Horowitz. 1995. Identification and robustness with contaminated and corrupted data. Econometrica 63: 281–302.CrossRefGoogle Scholar
  20. Molinari, F. 2005. Partial identification of probability distributions with misclassified data. Working paper, Cornell University.Google Scholar
  21. Parker, J., and B. Preston. 2005. Precautionary savings and consumption fluctuations. American Economic Review 95: 1119–1144.CrossRefGoogle Scholar
  22. Robins, J., S. Mark, and W. Newey. 1992. Estimating exposure effects by modelling the expectation of exposure conditional on confounders. Biometrics 48: 479–495.CrossRefGoogle Scholar
  23. Schennach, S. 2004. Estimation of nonlinear models with measurement error. Econometrica 72: 33–75.CrossRefGoogle Scholar
  24. Sepanski, J., and R. Carroll. 1993. Semiparametric quasi-likelihood and variance estimation in measurement error models. Journal of Econometrics 58: 223–256.CrossRefGoogle Scholar
  25. Taupin, M. 2001. Semiparametric estimation in the nonlinear structural errors-in-variables model. Annals of Statistics 29: 66–93.CrossRefGoogle Scholar

Copyright information

© Macmillan Publishers Ltd. 2018

Authors and Affiliations

  • Han Hong
    • 1
  1. 1.