The New Palgrave Dictionary of Economics

2018 Edition
| Editors: Macmillan Publishers Ltd

Mathematics of Networks

  • M. E. J. Newman
Reference work entry
DOI: https://doi.org/10.1057/978-1-349-95189-5_2565

Abstract

The patterns of interactions, both economic and otherwise, between individuals, groups or corporations form social networks whose structure can have a substantial effect on economic outcomes. The study of social networks and their implications has a long history in the social sciences and more recently in applied mathematics and related fields. This article reviews the main developments in the area with a focus on practical applications of network mathematics.

Keywords

Bernoulli random graph Centrality measures Graph theory Milgram, S. Moreno, J. Network formation Networks, mathematics of Non-Poisson degree distributions Perron–Frobenius theorem Small worlds Social interactions Social networks 
This is a preview of subscription content, log in to check access

Bibliography

  1. Ahuja, R., T. Magnanti, and J. Orlin. 1993. Network flows: Theory, algorithms, and applications. Upper Saddle River: Prentice Hall.Google Scholar
  2. Albert, R., and A.-L. Barabási. 2002. Statistical mechanics of complex networks. Reviews of Modern Physics 74: 47–97.CrossRefGoogle Scholar
  3. Barabási, A.-L., and R. Albert. 1999. Emergence of scaling in random networks. Science 286: 509–512.CrossRefGoogle Scholar
  4. Barnes, J. 1954. Class and committees in a Norwegian island parish. Human Relations 7: 39–58.CrossRefGoogle Scholar
  5. Bollobás, B. 2001. Random graphs. 2nd ed. New York: Academic Press.CrossRefGoogle Scholar
  6. Davis, A., B. Gardner, and M. Gardner. 1941. Deep south. Chicago: University of Chicago Press.Google Scholar
  7. Dorogovtsev, S., and J. Mendes. 2003. Evolution of networks: From biological nets to the internet and WWW. Oxford: Oxford University Press.CrossRefGoogle Scholar
  8. Erdős, P., and A. Rényi. 1960. On the evolution of random graphs. Publications of the Mathematical Institute of the Hungarian Academy of Sciences 5: 17–61.Google Scholar
  9. Harary, F. 1995. Graph theory. Cambridge: Perseus.Google Scholar
  10. Krapivsky, P., S. Redner, and F. Leyvraz. 2000. Connectivity of growing random networks. Physical Review Letters 85: 4629–4632.CrossRefGoogle Scholar
  11. Milgram, S. 1967. The small world problem. Psychology Today 2: 60–67.Google Scholar
  12. Moreno, J. 1934. Who shall survive? Beacon: Beacon House.Google Scholar
  13. Newman, M. 2003. The structure and function of complex networks. SIAM Review 45: 167–256.CrossRefGoogle Scholar
  14. Pool, I., and M. Kochen. 1978. Contacts and influence. Social Networks 1: 1–48.CrossRefGoogle Scholar
  15. Price, D. 1976. A general theory of bibliometric and other cumulative advantage processes. Journal of the American Society for Information Science 27: 292–306.CrossRefGoogle Scholar
  16. Rapoport, A., and W. Horvath. 1961. A study of a large sociogram. Behavioral Science 6: 279–291.CrossRefGoogle Scholar
  17. Scott, J. 2000. Social network analysis: A handbook. 2nd ed. London: Sage.Google Scholar
  18. Simon, H. 1955. On a class of skew distribution functions. Biometrika 42: 425–440.CrossRefGoogle Scholar
  19. Solomonoff, R., and A. Rapoport. 1951. Connectivity of random nets. Bulletin of Mathematical Biophysics 13: 107–117.CrossRefGoogle Scholar
  20. Wasserman, S., and K. Faust. 1994. Social network analysis. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  21. West, D. 1996. Introduction to graph theory. Upper Saddle River: Prentice Hall.Google Scholar

Copyright information

© Macmillan Publishers Ltd. 2018

Authors and Affiliations

  • M. E. J. Newman
    • 1
  1. 1.