The New Palgrave Dictionary of Economics

2018 Edition
| Editors: Macmillan Publishers Ltd

Survey Data, Analysis of

  • Jeff Dominitz
  • Arthur van Soest
Reference work entry
DOI: https://doi.org/10.1057/978-1-349-95189-5_2523

Abstract

An important advantage of survey data over, for example, administrative data is the opportunity to directly measure subjective phenomena, such as respondents’ expectations on some future outcomes or their preferences over consumption bundles. The existing literature shows that data on expectations and preferences reported in carefully designed household surveys can greatly enhance the empirical content of models of economic decisions and choices. A particularly promising route is to combine subjective data with data on actual behaviour.

Keywords

Consumer confidence Contingent valuation Expectations Expected utility Health insurance Household surveys Independence of irrelevant alternatives Intertemporal choice models Job search Katona, G. Mortality Multinomial models Precautionary savings Prediction Preferences Rational expectations Reservation wage Revealed preference theory Risk aversion Risk preference Stated preferences Subjective data Subjective probability Survey data, analysis of Symmetric loss functions Time preference Willingness to pay 
This is a preview of subscription content, log in to check access

Bibliography

  1. Ariely, D., D. Prelec, and G. Loewenstein. 2003. Coherent arbitrariness: Stable demand curves without stable preferences. Quarterly Journal of Economics 118: 73–105.CrossRefGoogle Scholar
  2. Barsky, R., F. Juster, M. Kimball, and M. Shapiro. 1997. Preference parameters and behavioral heterogeneity: An experimental approach in the health and retirement survey. Quarterly Journal of Economics 112: 537–580.CrossRefGoogle Scholar
  3. Bernheim, B. 1989. The timing of retirement: A comparison of expectations and realizations. In The economics of aging, ed. D. Wise. Chicago: NBER and University of Chicago Press.Google Scholar
  4. Bernheim, B. 1990. How do the elderly form expectations? An analysis of responses to new information. In Issues in the economics of aging, ed. D. Wise. Chicago: NBER and University of Chicago Press.Google Scholar
  5. Chambers, R., and C. Skinner. 2003. Analysis of survey data. Hoboken, NJ: Wiley.CrossRefGoogle Scholar
  6. Das, M., J. Dominitz, and A. van Soest. 1999. Comparing predictions and outcomes: Theory and application to income changes. Journal of the American Statistical Association 94: 75–85.CrossRefGoogle Scholar
  7. Diamond, P., and J. Hausman. 1994. Contingent valuation: Is some number better than no number? Journal of Economic Perspectives 8(4): 45–64.CrossRefGoogle Scholar
  8. Dominitz, J. 2001. Estimation of income expectations models using expectations and realizations data. Journal of Econometrics 102: 165–195.CrossRefGoogle Scholar
  9. Dominitz, J., and C. Manski. 1997a. Using expectations data to study subjective income expectations. Journal of the American Statistical Association 92: 855–867.CrossRefGoogle Scholar
  10. Dominitz, J., and C. Manski. 1997b. Perceptions of economic insecurity: Evidence from the survey of economic expectations. Public Opinion Quarterly 61: 261–287.CrossRefGoogle Scholar
  11. Dominitz, J., and C. Manski. 2004. How should we measure consumer confidence? Journal of Economic Perspectives 18(2): 51–66.CrossRefGoogle Scholar
  12. Donkers, B., B. Melenberg, and A. van Soest. 2001. Estimating risk attitudes using lotteries – A large sample approach. Journal of Risk and Uncertainty 22: 165–195.CrossRefGoogle Scholar
  13. Erdem, T., M. Keane, and J. Strebel. 2005. Learning about computers: An analysis of information search and technology choice. Quantitative Marketing and Economics 3: 207–246.CrossRefGoogle Scholar
  14. Euwals, R., B. Melenberg, and A. van Soest. 1998. Testing the predictive value of subjective labour supply data. Journal of Applied Econometrics 13: 567–586.CrossRefGoogle Scholar
  15. Frederick, S., G. Loewenstein, and T. O’Donoghue. 2002. Time discounting and time preference: A critical review. Journal of Economic Literature 40: 351–401.CrossRefGoogle Scholar
  16. Guiso, L., T. Jappelli, and D. Terlizzese. 1992. Earnings uncertainty and precautionary saving. Journal of Monetary Economics 30: 307–337.CrossRefGoogle Scholar
  17. Hanemann, W. 1994. Valuing the environment through contingent valuation. Journal of Economic Perspectives 8(4): 19–43.CrossRefGoogle Scholar
  18. Hurd, M., and K. McGarry. 1995. Evaluation of the subjective probabilities of survival in the HRS. Journal of Human Resources 30: S268–S292.CrossRefGoogle Scholar
  19. Hurd, M., and K. McGarry. 2002. The predictive validity of subjective probabilities of survival. Economic Journal 112: 966–985.CrossRefGoogle Scholar
  20. Juster, F. 1966. Consumer buying intentions and purchase probability: An experiment in survey design. Journal of the American Statistical Association 61: 658–696.CrossRefGoogle Scholar
  21. Kapteyn, A. 1994. The measurement of household cost functions: Revealed preference versus subjective measures. Journal of Population Economics 7: 333–350.CrossRefGoogle Scholar
  22. Kapteyn, A., and F. Teppa. 2003. Hypothetical intertemporal consumption choices. Economic Journal 113: C140–C152.CrossRefGoogle Scholar
  23. Katona, G. 1957. Federal Reserve Board Committee reports on consumer expectations and savings statistics. Review of Economics and Statistics 39: 40–46.CrossRefGoogle Scholar
  24. Keane, M., and D. Runkle. 1990. Testing the rationality of price forecasters: New evidence from panel data. American Economic Review 80: 714–734.Google Scholar
  25. Lancaster, T., and A. Chesher. 1983. An econometric analysis of reservation wages. Econometrica 51: 1661–1676.CrossRefGoogle Scholar
  26. Louviere, J., D. Hensher, and J. Swait. 2000. Stated choice methods. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  27. Ludvigson, S. 2004. Consumer confidence and consumer spending. Journal of Economic Perspectives 18(2): 29–50.CrossRefGoogle Scholar
  28. Manski, C. 1990. The use of intentions data to predict behavior: A best-case analysis. Journal of the American Statistical Association 85: 934–940.CrossRefGoogle Scholar
  29. Manski, C. 1999. Analysis of choice expectations in incomplete scenarios. Journal of Risk and Uncertainty 19: 49–65.CrossRefGoogle Scholar
  30. Manski, C. 2004. Measuring expectations. Econometrica 72: 1329–1376.CrossRefGoogle Scholar
  31. McFadden, D. 1973. Conditional logit analysis of qualitative choice behavior. In Frontiers of econometrics, ed. P. Zarembka. New York: Academic Press.Google Scholar
  32. McFadden, D. 1986. The choice theory approach to market research. Marketing Science 5: 275–297.CrossRefGoogle Scholar
  33. Mitchell, R., and R. Carson. 1989. Using surveys to value public goods: The contingent valuation method. Baltimore: John Hopkins University Press.Google Scholar
  34. Pesaran, M., and M. Weale. 2006. Survey expectations. In Handbook of economic forecasting, ed. G. Elliott, C. Granger, and A. Timmermann, Vol. 1. Amsterdam: North-Holland.Google Scholar
  35. Revelt, D., and K. Train. 1998. Mixed logit with repeated choices: Households’ choices of appliance efficiency level. Review of Economics and Statistics 80: 647–657.CrossRefGoogle Scholar
  36. Schwarz, N., H.-J. Hippler, B. Deutsch, and F. Strack. 1985. Response scales: Effects of category range on reported behavior and comparative judgments. Public Opinion Quarterly 49: 388–395.CrossRefGoogle Scholar
  37. Tobin, J. 1959. On the predictive value of consumer intentions and attitudes. Review of Economics and Statistics 21: 1–11.Google Scholar

Copyright information

© Macmillan Publishers Ltd. 2018

Authors and Affiliations

  • Jeff Dominitz
    • 1
  • Arthur van Soest
    • 1
  1. 1.