Skip to main content

Game Theory and Biology

  • Reference work entry
  • First Online:
Book cover The New Palgrave Dictionary of Economics
  • 51 Accesses

Abstract

Darwinian evolutionary dynamics and learning dynamics provide the foundation for game theory in biology. The theory is used to analyse interactions between individuals. Animal fighting behaviour, cooperative interactions and signalling interactions are examples of important areas of application. The payoffs to strategies in biological games represent Darwinian fitness, viz. survival and reproductive success. The strategies can be behaviour patterns, but also choices of phenotypic properties such as becoming a male or a female. The evolutionary analysis of allocation to male and female function is one of the most successful applications of game theory in biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 6,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 8,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Axelrod, R., and W.D. Hamilton. 1981. The evolution of cooperation. Science 211: 1390–1396.

    Article  Google Scholar 

  • Barnard, C.J., and R.M. Sibly. 1981. Producers and scroungers: A general model and its application to captive flocks of house sparrows. Animal Behaviour 29: 543–550.

    Article  Google Scholar 

  • Burt, A., and R. Trivers. 2006. Genes in conflict: the biology of selfish genetic elements. Cambridge: Harvard University Press.

    Book  Google Scholar 

  • Caswell, H. 2001. Matrix population models. 2nd ed. Sunderland: Sinauer.

    Google Scholar 

  • Charnov, E.L. 1982. The theory of sex allocation. Princeton: Princeton University Press.

    Google Scholar 

  • Coolen, I., L.-A. Giraldeau, and M. Lavoie. 2001. Head position as an indicator of producer and scrounger tactics in a ground-feeding bird. Animal Behaviour 61: 895–903.

    Article  Google Scholar 

  • Darwin, C. 1874. The descent of man and selection in relation to sex. 2nd ed. London: Murray.

    Book  Google Scholar 

  • David, P., T. Bjorksten, K. Fowler, and A. Pomiankowski. 2000. Condition-dependent signalling of genetic variation in stalk-eyed flies. Nature 406: 186–188.

    Article  Google Scholar 

  • Düsing, C. 1884. Die Regulierung des Geschlechtsverhältnisses. Jena: Fischer.

    Google Scholar 

  • Edwards, A.W.F. 2000. Carl Düsing (1884) on the regulation of the sex-ratio. Theoretical Population Biology 58: 255–257.

    Article  Google Scholar 

  • Fisher, R.A. 1930. The genetical theory of natural selection. Oxford: Clarendon Press.

    Book  Google Scholar 

  • Giraldeau, L.-A., and T. Caraco. 2000. Social foraging theory. Princeton: Princeton University Press.

    Google Scholar 

  • Grafen, A. 1991. Biological signals as handicaps. Journal of Theoretical Biology 144: 517–546.

    Article  Google Scholar 

  • Grafen, A. 2006. A theory of Fisher’s reproductive value. Journal of Mathematical Biology 53: 15–60.

    Article  Google Scholar 

  • Gross, M.R. 1985. Disruptive selection for alternative life histories in salmon. Nature 313: 47–48.

    Article  Google Scholar 

  • Gross, M.R. 1996. Alternative reproductive strategies and tactics: Diversity within sexes. Trends in Ecology & Evolution 11: 92–98.

    Article  Google Scholar 

  • Hamilton, W.D. 1964. The genetical evolution of social behaviour, I, II. Journal of Theoretical Biology 7: 1–52.

    Article  Google Scholar 

  • Hamilton, W.D. 1979. Wingless and fighting males in fig wasps and other insects. In Reproductive competition, mate choice and sexual selection in insects, ed. M.S. Blum and N.A. Blum. New York: Academic Press.

    Google Scholar 

  • Hammerstein, P. 2003. Why is reciprocity so rare in social animals? A protestant appeal. In Genetic and cultural evolution of Cooperation, ed. P. Hammerstein. Cambridge: MIT Press.

    Google Scholar 

  • Hammerstein, P., and E.H. Hagen. 2005. The second wave of evolutionary economics in biology. Trends in Ecology & Evolution 20: 604–609.

    Article  Google Scholar 

  • Hofbauer, J., and K. Sigmund. 1998. Evolutionary games and population dynamics. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Houston, A.I., and J.M. McNamara. 1999. Models of adaptive behaviour: An approach based on state. Cambridge: Cambridge University Press.

    Google Scholar 

  • Maynard Smith, J. 1982. Evolution and the theory of games. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Maynard Smith, J., and D. Harper. 2003. Animal signals. Oxford: Oxford University Press.

    Google Scholar 

  • Maynard Smith, J., and G.R. Parker. 1976. The logic of asymmetric contests. Animal Behaviour 24: 159–175.

    Article  Google Scholar 

  • Maynard Smith, J., and G.R. Price. 1973. The logic of animal conflict. Nature 246: 15–18.

    Article  Google Scholar 

  • McNamara, J.M., and A.I. Houston. 1996. State-dependent life histories. Nature 380: 215–221.

    Article  Google Scholar 

  • Metz, J.A.J., R.M. Nisbet, and S.A.H. Geritz. 1992. How should we define ‘fitness’ for general ecological scenarios? Trends in Ecology & Evolution 7: 198–202.

    Article  Google Scholar 

  • Metz, J.A.J., S.A.H. Geritz, G. Meszéna, F.J.A. Jacobs, and J.S. van Heerwaarden. 1996. Adaptive dynamics, a geometrical study of nearly faithful reproduction. In Stochastic and spatial structures of dynamical systems. Proceedings of the Royal Dutch Academy of Science (KNAV Verhandelingen), ed. S.J. van Strien and S.M. Verduyn Lunel. Amsterdam: North-Holland.

    Google Scholar 

  • Mottley, K., and L.-A. Giraldeau. 2000. Experimental evidence that group foragers can converge on predicted producer-scrounger equilibria. Animal Behaviour 60: 341–350.

    Article  Google Scholar 

  • Noe, R., and P. Hammerstein. 1994. Biological markets: Supply and demand determine the effect of partner choice in cooperation, mutualism and mating. Behavioral Ecology and Sociobiology 35: 1–11.

    Article  Google Scholar 

  • Nowak, M.A., and K. Sigmund. 2004. Evolutionary dynamics of biological games. Science 303: 793–799.

    Article  Google Scholar 

  • Pen, I., and F.J. Weissing. 2002. Optimal sex allocation: Steps towards a mechanistic theory. In Sex ratios – concepts and research methods, ed. I.C.W. Hardy. Cambridge: Cambridge University Press.

    Google Scholar 

  • Rice, S.H. 2004. Evolutionary theory – mathematical and conceptual foundations. Sunderland: Sinauer.

    Google Scholar 

  • Shaw, R.F., and J.D. Mohler. 1953. The selective significance of the sex ratio. American Naturalist 87: 337–342.

    Article  Google Scholar 

  • Shuster, S.M., and M.J. Wade. 2003. Mating systems and strategies. Princeton: Princeton University Press.

    Google Scholar 

  • Sigmund, K. 2005. John Maynard Smith and evolutionary game theory. Theoretical Population Biology 68: 7–10.

    Article  Google Scholar 

  • Spence, M. 1973. Job market signaling. Quarterly Journal of Economics 87: 355–374.

    Article  Google Scholar 

  • Spence, M. 1974. Market signaling. Cambridge: Harvard University Press.

    Google Scholar 

  • Trivers, R.L. 1971. The evolution of reciprocal altruism. Quarterly Review of Biology 46: 35–57.

    Article  Google Scholar 

  • Zahavi, A. 1975. Mate selection – a selection for a handicap. Journal of Theoretical Biology 53: 205–214.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Copyright information

© 2018 Macmillan Publishers Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Leimar, O. (2018). Game Theory and Biology. In: The New Palgrave Dictionary of Economics. Palgrave Macmillan, London. https://doi.org/10.1057/978-1-349-95189-5_2510

Download citation

Publish with us

Policies and ethics