The New Palgrave Dictionary of Economics

2018 Edition
| Editors: Macmillan Publishers Ltd

Game Theory and Biology

  • Olof Leimar
Reference work entry
DOI: https://doi.org/10.1057/978-1-349-95189-5_2510

Abstract

Darwinian evolutionary dynamics and learning dynamics provide the foundation for game theory in biology. The theory is used to analyse interactions between individuals. Animal fighting behaviour, cooperative interactions and signalling interactions are examples of important areas of application. The payoffs to strategies in biological games represent Darwinian fitness, viz. survival and reproductive success. The strategies can be behaviour patterns, but also choices of phenotypic properties such as becoming a male or a female. The evolutionary analysis of allocation to male and female function is one of the most successful applications of game theory in biology.

Keywords

Alternative reproductive strategies Class structured populations Cooperation Deterministic evolutionary dynamics Division of labour Evolutionarily stable strategies Evolutionary theory Game theory and biology Learning and evolution in games Life-history strategy Mate choice Mixed strategy equilibria Natural selection Playing the field Prisoner’s Dilemma Producer–scrounger game Reciprocity Reproductive value Sex ratio theory Signalling Tit for tat 

JEL Classifications

C7 
This is a preview of subscription content, log in to check access.

Bibliography

  1. Axelrod, R., and W.D. Hamilton. 1981. The evolution of cooperation. Science 211: 1390–1396.CrossRefGoogle Scholar
  2. Barnard, C.J., and R.M. Sibly. 1981. Producers and scroungers: A general model and its application to captive flocks of house sparrows. Animal Behaviour 29: 543–550.CrossRefGoogle Scholar
  3. Burt, A., and R. Trivers. 2006. Genes in conflict: the biology of selfish genetic elements. Cambridge: Harvard University Press.CrossRefGoogle Scholar
  4. Caswell, H. 2001. Matrix population models. 2nd ed. Sunderland: Sinauer.Google Scholar
  5. Charnov, E.L. 1982. The theory of sex allocation. Princeton: Princeton University Press.Google Scholar
  6. Coolen, I., L.-A. Giraldeau, and M. Lavoie. 2001. Head position as an indicator of producer and scrounger tactics in a ground-feeding bird. Animal Behaviour 61: 895–903.CrossRefGoogle Scholar
  7. Darwin, C. 1874. The descent of man and selection in relation to sex. 2nd ed. London: Murray.CrossRefGoogle Scholar
  8. David, P., T. Bjorksten, K. Fowler, and A. Pomiankowski. 2000. Condition-dependent signalling of genetic variation in stalk-eyed flies. Nature 406: 186–188.CrossRefGoogle Scholar
  9. Düsing, C. 1884. Die Regulierung des Geschlechtsverhältnisses. Jena: Fischer.Google Scholar
  10. Edwards, A.W.F. 2000. Carl Düsing (1884) on the regulation of the sex-ratio. Theoretical Population Biology 58: 255–257.CrossRefGoogle Scholar
  11. Fisher, R.A. 1930. The genetical theory of natural selection. Oxford: Clarendon Press.CrossRefGoogle Scholar
  12. Giraldeau, L.-A., and T. Caraco. 2000. Social foraging theory. Princeton: Princeton University Press.Google Scholar
  13. Grafen, A. 1991. Biological signals as handicaps. Journal of Theoretical Biology 144: 517–546.CrossRefGoogle Scholar
  14. Grafen, A. 2006. A theory of Fisher’s reproductive value. Journal of Mathematical Biology 53: 15–60.CrossRefGoogle Scholar
  15. Gross, M.R. 1985. Disruptive selection for alternative life histories in salmon. Nature 313: 47–48.CrossRefGoogle Scholar
  16. Gross, M.R. 1996. Alternative reproductive strategies and tactics: Diversity within sexes. Trends in Ecology & Evolution 11: 92–98.CrossRefGoogle Scholar
  17. Hamilton, W.D. 1964. The genetical evolution of social behaviour, I, II. Journal of Theoretical Biology 7: 1–52.CrossRefGoogle Scholar
  18. Hamilton, W.D. 1979. Wingless and fighting males in fig wasps and other insects. In Reproductive competition, mate choice and sexual selection in insects, ed. M.S. Blum and N.A. Blum. New York: Academic Press.Google Scholar
  19. Hammerstein, P. 2003. Why is reciprocity so rare in social animals? A protestant appeal. In Genetic and cultural evolution of Cooperation, ed. P. Hammerstein. Cambridge: MIT Press.Google Scholar
  20. Hammerstein, P., and E.H. Hagen. 2005. The second wave of evolutionary economics in biology. Trends in Ecology & Evolution 20: 604–609.CrossRefGoogle Scholar
  21. Hofbauer, J., and K. Sigmund. 1998. Evolutionary games and population dynamics. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  22. Houston, A.I., and J.M. McNamara. 1999. Models of adaptive behaviour: An approach based on state. Cambridge: Cambridge University Press.Google Scholar
  23. Maynard Smith, J. 1982. Evolution and the theory of games. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  24. Maynard Smith, J., and D. Harper. 2003. Animal signals. Oxford: Oxford University Press.Google Scholar
  25. Maynard Smith, J., and G.R. Parker. 1976. The logic of asymmetric contests. Animal Behaviour 24: 159–175.CrossRefGoogle Scholar
  26. Maynard Smith, J., and G.R. Price. 1973. The logic of animal conflict. Nature 246: 15–18.CrossRefGoogle Scholar
  27. McNamara, J.M., and A.I. Houston. 1996. State-dependent life histories. Nature 380: 215–221.CrossRefGoogle Scholar
  28. Metz, J.A.J., R.M. Nisbet, and S.A.H. Geritz. 1992. How should we define ‘fitness’ for general ecological scenarios? Trends in Ecology & Evolution 7: 198–202.CrossRefGoogle Scholar
  29. Metz, J.A.J., S.A.H. Geritz, G. Meszéna, F.J.A. Jacobs, and J.S. van Heerwaarden. 1996. Adaptive dynamics, a geometrical study of nearly faithful reproduction. In Stochastic and spatial structures of dynamical systems. Proceedings of the Royal Dutch Academy of Science (KNAV Verhandelingen), ed. S.J. van Strien and S.M. Verduyn Lunel. Amsterdam: North-Holland.Google Scholar
  30. Mottley, K., and L.-A. Giraldeau. 2000. Experimental evidence that group foragers can converge on predicted producer-scrounger equilibria. Animal Behaviour 60: 341–350.CrossRefGoogle Scholar
  31. Noe, R., and P. Hammerstein. 1994. Biological markets: Supply and demand determine the effect of partner choice in cooperation, mutualism and mating. Behavioral Ecology and Sociobiology 35: 1–11.CrossRefGoogle Scholar
  32. Nowak, M.A., and K. Sigmund. 2004. Evolutionary dynamics of biological games. Science 303: 793–799.CrossRefGoogle Scholar
  33. Pen, I., and F.J. Weissing. 2002. Optimal sex allocation: Steps towards a mechanistic theory. In Sex ratios – concepts and research methods, ed. I.C.W. Hardy. Cambridge: Cambridge University Press.Google Scholar
  34. Rice, S.H. 2004. Evolutionary theory – mathematical and conceptual foundations. Sunderland: Sinauer.Google Scholar
  35. Shaw, R.F., and J.D. Mohler. 1953. The selective significance of the sex ratio. American Naturalist 87: 337–342.CrossRefGoogle Scholar
  36. Shuster, S.M., and M.J. Wade. 2003. Mating systems and strategies. Princeton: Princeton University Press.Google Scholar
  37. Sigmund, K. 2005. John Maynard Smith and evolutionary game theory. Theoretical Population Biology 68: 7–10.CrossRefGoogle Scholar
  38. Spence, M. 1973. Job market signaling. Quarterly Journal of Economics 87: 355–374.CrossRefGoogle Scholar
  39. Spence, M. 1974. Market signaling. Cambridge: Harvard University Press.Google Scholar
  40. Trivers, R.L. 1971. The evolution of reciprocal altruism. Quarterly Review of Biology 46: 35–57.CrossRefGoogle Scholar
  41. Zahavi, A. 1975. Mate selection – a selection for a handicap. Journal of Theoretical Biology 53: 205–214.CrossRefGoogle Scholar

Copyright information

© Macmillan Publishers Ltd. 2018

Authors and Affiliations

  • Olof Leimar
    • 1
  1. 1.