The New Palgrave Dictionary of Economics

2018 Edition
| Editors: Macmillan Publishers Ltd

Robust Estimators in Econometrics

  • P. Čížek
  • W. Härdle
Reference work entry
DOI: https://doi.org/10.1057/978-1-349-95189-5_2496

Abstract

Econometric data are often obtained under conditions that cannot be well controlled, and so partial departures from the model assumptions in use (data contamination) occur relatively frequently. To address this, we first introduce concepts of robust statistics for qualifying and quantifying sensitivity of estimation methods to data contamination as well as important approaches to robust estimation. Later, we discuss how robust estimation methods have been adapted to various areas of econometrics, including time series analysis and general GMM-based estimation.

Keywords

Breakdown point Data contamination Generalized method of moments Heteroscedasticity Influence function Instrumental variables Least squares Linear regression Maximum likelihood Maximum-bias curve Measurement errors Mestimation Newton–Raphson procedure Nonlinear models Probability distribution Qualitative and quantitative robustness Quantile regression Random variables Robust econometrics Robust statistics S-estimation Simultaneous equations models Timeseries analysis 
This is a preview of subscription content, log in to check access

Notes

Acknowledgment

This work was supported by the Deutsche Forschungsgemeinschaft through the SFB 649 ‘Economic Risk’.

Bibliography

  1. Atkinson, A., S. Koopman, and N. Shephard. 1997. Detecting shocks: Outliers and breaks in time series. Journal of Econometrics 80: 387–422.CrossRefGoogle Scholar
  2. Bai, Z.D., and Y. Wu. 1997. General M-estimation. Journal of Multivariate Analysis 63: 119–135.CrossRefGoogle Scholar
  3. Balke, N., and T. Fomby. 1994. Large shocks, small shocks, and economic fluctuations: Outliers in macroeconomic time series. Journal of Applied Econometrics 9: 181–200.CrossRefGoogle Scholar
  4. Berrendero, J., and R. Zamar. 2001. Maximum bias curves for robust regression with non-elliptical regressors. Annals of Statistics 29: 224–251.CrossRefGoogle Scholar
  5. Bianco, A., M. Ben, E. Martínez, and V. Yohai. 2001. Regression models with ARIMA errors. Journal of Forecasting 20: 565–579.CrossRefGoogle Scholar
  6. Bilodeau, M., and P. Duchesne. 2000. Robust estimation of the SUR model. The Canadian Journal of Statistics 28: 277–288.CrossRefGoogle Scholar
  7. Chen, C., and L.-M. Liu. 1993. Joint estimation of model parameters and outlier effects in time series. Journal of the American Statistical Association 88: 284–297.Google Scholar
  8. Chernozhukov, V., and C. Hansen. 2006. Instrumental quantile regression inference for structural and treatment effect models. Journal of Econometrics 132: 491–525.CrossRefGoogle Scholar
  9. Čížek, P. 2004. General trimmed estimation: Robust approach to nonlinear and limited dependent variable models. Discussion Paper No. 2004/130. CentER: Tilburg University.Google Scholar
  10. Čížek, P. 2006. Least trimmed squares in nonlinear regression under dependence. Journal of Statistical Planning and Inference 136: 3967–3988.CrossRefGoogle Scholar
  11. Clarke, B. 2000. An adaptive method of estimation and outlier detection in regression applicable for small to moderate sample sizes. Probability and Statistics 20: 25–50.Google Scholar
  12. Croux, C., P. Rousseeuw, and O. Hossjer. 1994. Generalized S-estimators. Journal of the American Statistical Association 89: 1271–1281.CrossRefGoogle Scholar
  13. Davies, L., and U. Gather. 2005. Breakdown and groups. Annals of Statistics 33: 988–993.CrossRefGoogle Scholar
  14. Fiteni, I. 2002. Robust estimation of structural break points. Econometric Theory 18: 349–386.CrossRefGoogle Scholar
  15. Fiteni, I. 2004. τ-estimators of regression models with structural change of unknown location. Journal of Econometrics 119: 19–44.CrossRefGoogle Scholar
  16. Franses, P., T. Kloek, and A. Lucas. 1999. Outlier robust analysis of longrun marketing effects for weekly scanning data. Journal of Econometrics 89: 293–315.CrossRefGoogle Scholar
  17. Franses, P., D. van Dijk, and A. Lucas. 2004. Short patches of outliers, ARCH and volatility modelling. Applied Financial Economics 14: 221–231.CrossRefGoogle Scholar
  18. Franke, J., W. Härdle, and R. Martin. 1984. Robust and nonlinear time series analysis. Berlin: Springer.CrossRefGoogle Scholar
  19. Gagliardini, P., F. Trojani, and G. Urga. 2005. Robust GMM tests for structural breaks. Journal of Econometrics 129: 139–182.CrossRefGoogle Scholar
  20. Genton, M., and A. Lucas. 2003. Comprehensive definitions of breakdown-points for independent and dependent observations. Journal of the Royal Statistical Society Series B 65: 81–94.CrossRefGoogle Scholar
  21. Genton, M., and E. Ronchetti. 2003. Robust indirect inference. Journal of the American Statistical Association 98: 67–76.CrossRefGoogle Scholar
  22. Gervini, D., and V. Yohai. 2002. A class of robust and fully efficient regression estimators. Annals of Statistics 30: 583–616.CrossRefGoogle Scholar
  23. Hadi, A., and A. Luceño. 1997. Maximum trimmed likelihood estimators: A unified approach, examples, and algorithms. Computational Statistics and Data Analysis 25: 251–272.CrossRefGoogle Scholar
  24. Haldrup, N., A. Montans, and A. Sanso. 2005. Measurement errors and outliers in seasonal unit root testing. Journal of Econometrics 127: 103–128.CrossRefGoogle Scholar
  25. Hampel, F. 1971. A general qualitative definition of robustness. Annals of Mathematical Statistics 42: 1887–1896.CrossRefGoogle Scholar
  26. Hampel, F., E. Ronchetti, P. Rousseeuw, and W. Stahel. 1986. Robust statistics: The approach based on influence function. New York: Wiley.Google Scholar
  27. Härdle, W. 1982. Robust regression function estimation. Journal of Multivariate Analysis 14: 169–180.CrossRefGoogle Scholar
  28. He, X., and D. Simpson. 1993. Lower bounds for contamination bias: Globally minimax versus locally linear estimation. Annals of Statistics 21: 314–337.CrossRefGoogle Scholar
  29. Huber, P. 1964. Robust estimation of a location parameter. Annals of Mathematical Statistics 35: 73–101.CrossRefGoogle Scholar
  30. Hubert, M., and P. Rousseeuw. 1997. Robust regression with both continuous and binary regressors. Journal of Statistical Planning and Inference 57: 153–163.CrossRefGoogle Scholar
  31. Kim, T.-H., and C. Muller. 2007. Two-stage Huber estimation. Journal of Statistical Planning and Inference 137: 405–418.CrossRefGoogle Scholar
  32. Koenker, R., and J. Machado. 1999. Goodness of fit and related inference processes for quantile regression. Journal of the American Statistical Association 94: 1296–1310.CrossRefGoogle Scholar
  33. Koenker, R., and S. Portnoy. 1990. M-estimation of multivariate regressions. Journal of the American Statistical Association 85: 1060–1068.Google Scholar
  34. Koenker, R., and Z. Xiao. 2002. Inference on the quantile regression process. Econometrica 70: 1583–1612.CrossRefGoogle Scholar
  35. Koenker, R., and Z. Xiao. 2004. Unit root quantile autoregression inference. Journal of the American Statistical Association 99: 775–787.CrossRefGoogle Scholar
  36. Krishnakumar, J., and E. Ronchetti. 1997. Robust estimators for simultaneous equations models. Journal of Econometrics 78: 295–314.CrossRefGoogle Scholar
  37. Kunsch, H. 1984. Infinitesimal robustness for autoregressive processes. Annals of Statistics 12: 843–863.CrossRefGoogle Scholar
  38. Lopuhaä, H. 1992. Multivariate τ-estimators. The Canadian Journal of Statistics 19: 307–321.CrossRefGoogle Scholar
  39. Lucas, A. 1995. An outlier robust unit root test with an application to the extended Nelson–Plosser data. Journal of Econometrics 66: 153–173.CrossRefGoogle Scholar
  40. Marazzi, A., and V. Yohai. 2004. Adaptively truncated maximum likelihood regression with asymmetric errors. Journal of Statistical Planning and Inference 122: 271–291.CrossRefGoogle Scholar
  41. Markatou, M., A. Basu, and B. Lindsay. 1997. Weighted likelihood estimating equations: The discrete case with applications to logistic regression. Journal of Statistical Planning and Inference 57: 215–232.CrossRefGoogle Scholar
  42. Maronna, R., O. Bustos, and V. Yohai. 1979. Bias- and efficiency-robustness of general M-estimators for regression with random carriers. In Smoothing techniques for curve estimation, ed. T. Gasser and M. Rossenblatt. Berlin: Springer.Google Scholar
  43. Maronna, R., and V. Yohai. 1997. Robust estimation in simultaneous equations models. Journal of Statistical Planning and Inference 57: 233–244.CrossRefGoogle Scholar
  44. Maronna, R., and V. Yohai. 2000. Robust regression with both continuous and categorical predictors. Journal of Statistical Planning and Inference 89: 197–214.CrossRefGoogle Scholar
  45. Müller, C., and N. Neykov. 2003. Breakdown points of trimmed likelihood estimators and related estimators in generalized linear models. Journal of Statistical Planning and Inference 116: 503–519.CrossRefGoogle Scholar
  46. Ortelli, C., and F. Trojani. 2005. Robust efficient method of moments. Journal of Econometrics 128: 69–97.CrossRefGoogle Scholar
  47. Ronchetti, E., and F. Trojani. 2001. Robust inference with GMM estimators. Journal of Econometrics 101: 37–69.CrossRefGoogle Scholar
  48. Rousseeuw, P., and V. Yohai. 1984. Robust regression by means of S-estimators. In Robust and nonlinear time series analysis, ed. J. Franke, W. Härdle, and R. Martin. Heidelberg: Springer.Google Scholar
  49. Sakata, S., and H. White. 1995. An alternative definition of finite-sample breakdown point with application to regression model estimators. Journal of the American Statistical Association 90: 1099–1106.Google Scholar
  50. Sakata, S., and H. White. 1998. High breakdown point conditional dispersion estimation with application to S&P 500 daily returns volatility. Econometrica 66: 529–567.CrossRefGoogle Scholar
  51. Sakata, S., and H. White. 2001. S-estimation of nonlinear regression models with dependent and heterogeneous observations. Journal of Econometrics 103: 5–72.CrossRefGoogle Scholar
  52. Sapra, S. 2003. High-breakdown point estimation of some regression models. Applied Economics Letters 10: 875–878.CrossRefGoogle Scholar
  53. Simpson, D., D. Ruppert, and R. Carroll. 1992. On one-step GM estimates and stability of inferences in linear regression. Journal of the American Statistical Association 87: 439–450.CrossRefGoogle Scholar
  54. Stromberg, A., O. Hossjer, and D. Hawkins. 2000. The least trimmed differences regression estimator and alternatives. Journal of the American Statistical Association 95: 853–864.CrossRefGoogle Scholar
  55. Tsay, R., D. Pena, and A. Pankratz. 2000. Outliers in multivariate time series. Biometrika 87: 789–804.CrossRefGoogle Scholar
  56. Wagenvoor, R., and R. Waldman. 2002. On B-robust instrumental variable estimation of the linear model with panel data. Journal of Econometrics 106: 297–324.CrossRefGoogle Scholar
  57. Welsh, A., and E. Ronchetti. 2002. A journey in single steps: Robust one-step Mestimation in linear regression. Journal of Statistical Planning and Inference 103: 287–310.CrossRefGoogle Scholar
  58. Windham, M. 1995. Robustifying model fitting. Journal of the Royal Statistical Society Series B 57: 599–609.Google Scholar
  59. Yohai, V., and R. Zamar. 1988. High breakdown-point estimates of regression by means of the minimization of an efficient scale. Journal of the American Statistical Association 83: 406–413.CrossRefGoogle Scholar
  60. Yohai, V., and R. Zamar. 1993. A minimax-bias property of the least a-quantile estimates. Annals of Statistics 21: 1824–1842.CrossRefGoogle Scholar
  61. Zaman, A., P. Rousseeuw, and M. Orhan. 2001. Econometric applications of highbreakdown robust regression techniques. Economics Letters 71: 1–8.CrossRefGoogle Scholar
  62. Zinde-Walsh, V. 2002. Asymptotic theory for some high breakdown point estimators. Econometric Theory 18: 1172–1196.CrossRefGoogle Scholar

Copyright information

© Macmillan Publishers Ltd. 2018

Authors and Affiliations

  • P. Čížek
    • 1
  • W. Härdle
    • 1
  1. 1.