The New Palgrave Dictionary of Economics

2018 Edition
| Editors: Macmillan Publishers Ltd

Longitudinal Data Analysis

  • Cheng Hsiao
Reference work entry
DOI: https://doi.org/10.1057/978-1-349-95189-5_2491

Abstract

The advantages and fundamental methodological issues of statistical inference using data sets that contain time series observations of a number of individuals are discussed.

Keywords

Central limit theorems Discrete choice models Generalized method of moments Instrumental variables Laws of large numbers Least squares Linear models Logit models Maximum likelihood Panel data Tobit models Unit roots 

JEL Classifications

C23 C33 
This is a preview of subscription content, log in to check access.

Notes

Acknowledgment

I would like to thank Steven Durlauf for helpful comments.

Bibliography

  1. Ahn, S.C., and P. Schmidt. 1995. Efficient estimation of models for dynamic panel data. Journal of Econometrics 68: 5–27.CrossRefGoogle Scholar
  2. Anderson, T.W., and C. Hsiao. 1981. Estimation of dynamic models with error components. Journal of the American Statistical Association 76: 598–606.CrossRefGoogle Scholar
  3. Anderson, T.W., and C. Hsiao. 1982. Formulation and estimation of dynamic models using panel data. Journal of Econometrics 18: 47–82.CrossRefGoogle Scholar
  4. Anselin, L. 1988. Spatial econometrics: Methods and models. Boston: Kluwer.CrossRefGoogle Scholar
  5. Anselin, L., and D.A. Griffith. 1988. Do spatial effects really matter in regression analysis? Papers of the Regional Science Association 65: 11–34.CrossRefGoogle Scholar
  6. Anselin, L., J. Le Gallo, and H. Jayet. 2006. Spatial panel econometrics. In The econometrics of panel data: Fundamentals and recent developments in theory and practice, 3rd ed., ed. L. Matyas and P. Sevestre. Dordrecht: Kluwer.Google Scholar
  7. Arellano, M. 2001. Discrete choice with panel data. Working paper no. 0101. Madrid: CEMFI.Google Scholar
  8. Arellano, M. 2003. Panel data econometrics. Oxford: Oxford University PressGoogle Scholar
  9. Arellano, M., and S.R. Bond. 1991. Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations. Review of Economic Studies 58: 277–297.CrossRefGoogle Scholar
  10. Arellano, M., and O. Bover. 1995. Another look at the instrumental variable estimation of error-components models. Journal of Econometrics 68: 29–51.CrossRefGoogle Scholar
  11. Bai, J., and S. Ng. 2002. Determining the number of factors in approximate factor models. Econometrica 70: 91–121.CrossRefGoogle Scholar
  12. Balestra, P., and M. Nerlove. 1966. Pooling cross-section and time series data in the estimation of a dynamic model: The demand for natural gas. Econometrica 34: 585–612.CrossRefGoogle Scholar
  13. Baltagi, B.H. 2001. Econometric analysis of panel data. 2nd ed. New York: Wiley.Google Scholar
  14. Baltagi, B.H., and C. Kao. 2000. Nonstationary panels, cointegration in panels and dynamic panel: A survey. In Nonstationary panels panel cointegration, and dynamic panels, ed. B. Baltagi. Amsterdam: JAI Press.Google Scholar
  15. Ben-Porath, Y. 1973. Labor force participation rates and the supply of labor. Journal of Political Economy 81: 697–704.CrossRefGoogle Scholar
  16. Bhargava, A., and J.D. Sargan. 1983. Estimating dynamic random effects models from panel data covering short time periods. Econometrica 51: 1635–1659.CrossRefGoogle Scholar
  17. Binder, M., C. Hsiao, and M.H. Pesaran. 2005. Estimation and inference in short panel vector autoregressions with unit roots and cointegration. Econometric Theory 21: 795–837.CrossRefGoogle Scholar
  18. Breitung, J., and M.H. Pesaran. 2006. Unit roots and cointegration in panels. In The econometrics of panel data: Fundamentals and recent developments in theory and practice, 3rd ed., ed. L. Matyas and P. Sevestre. Dordrecht: Kluwer.Google Scholar
  19. Butler, J.S., and R. Moffitt. 1982. A computationally efficient quadrature procedure for the one factor multinomial probit model. Econometrica 50: 761–764.CrossRefGoogle Scholar
  20. Carro, J.M. 2006. Estimating dynamic panel data discrete choice models with fixed effects. Journal of Econometrics (forthcoming).Google Scholar
  21. Chamberlain, G. 1980. Analysis of covariance with qualitative data. Review of Economic Studies 47: 225–238.CrossRefGoogle Scholar
  22. Chamberlain, G. 1984. Panel data. In Handbook of econometrics, ed. Z. Griliches and M. Intriligato, Vol. 2. Amsterdam: North-Holland.Google Scholar
  23. Chamberlain, G. 1993. Feedback in panel data models. Mimeo: Department of Economics, Harvard University.Google Scholar
  24. Chang, Y. 2002. Nonlinear IV unit root tests in panels with cross-sectional dependency. Journal of Econometrics 110: 261–292.CrossRefGoogle Scholar
  25. Choi, I. 2001. Unit root tests for panel data. Journal of International Money and Finance 20: 249–272.CrossRefGoogle Scholar
  26. Choi, I. 2006. Nonstationary panels. In Palgrave handbooks of econometrics, vol. 1. T.C. Mills and K.D. Patterson. Basingstoke: Palgrave Macmillan.Google Scholar
  27. Cox, D.R., and N. Reid. 1987. Parameter orthogonality and approximate conditional inference. Journal of the Royal Statistical Society, B 49: 1–39.Google Scholar
  28. Dickey, D.A., and W.A. Fuller. 1979. Distribution of the estimators for autoregressive time series with a unit root. Journal of the American Statistical Association 74: 427–431.Google Scholar
  29. Granger, C.W.J. 1990. Aggregation of time-series variables: A survey. In Disaggregation in econometric modeling, ed. T. Barker and M.H. Pesaran. London: Routledge.Google Scholar
  30. Griliches, Z. 1967. Distributed lags: A survey. Econometrica 35: 16–49.CrossRefGoogle Scholar
  31. Griliches, Z., and J.A. Hausman. 1986. Errors-in-variables in panel data. Journal of Econometrics 31: 93–118.CrossRefGoogle Scholar
  32. Hausman, J.A. 1978. Specification tests in econometrics. Econometrica 46: 1251–1271.CrossRefGoogle Scholar
  33. Heckman, J.J. 1981. Statistical models for discrete panel data. In Structural analysis of discrete data with econometric applications, ed. C.F. Manski and D. McFadden. Cambridge: MIT Press.Google Scholar
  34. Honoré, B. 1992. Trimmed LAD and least squares estimation of truncated and censored regression models with fixed effects. Econometrica 60: 533–567.CrossRefGoogle Scholar
  35. Honoré, B., and E. Kyriazidou. 2000. Panel data discrete choice models with lagged dependent variables. Econometrica 68: 839–874.CrossRefGoogle Scholar
  36. Horowitz, J.L. 1992. A smoothed maximum score estimator for the binary response model. Econometrica 60: 505–531.CrossRefGoogle Scholar
  37. Hsiao, C. 1996. Random coefficient models. In The econometrics of panel data, 2nd ed., ed. L. Matyas and P. Sevestre. Dordrecht: Kluwer.Google Scholar
  38. Hsiao, C. 2003. Analysis of panel data. 2nd ed. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  39. Hsiao, C., and M.H. Pesaran. 2006. Random coefficients models. In The econometrics of panel data: Fundamentals and recent developments in theory and practice, 3rd ed., ed. L. Matyas and P. Sevestre. Dordrecht: Kluwer.Google Scholar
  40. Hsiao, C., M.H. Pesaran, and A.K. Tahmiscioglu. 2002. Maximum likelihood estimation of fixed effects dynamic panel data models covering short time periods. Journal of Econometrics 109: 107–150.CrossRefGoogle Scholar
  41. Hsiao, C., Y. Shen, and H. Fujiki. 2005b. Aggregate vs disaggregate data analysis – A paradox in the estimation of money demand function of Japan under the low interest rate policy. Journal of Applied Econometrics 20: 579–601.CrossRefGoogle Scholar
  42. Hsiao, C., Y. Shen, B. Wang, and G. Weeks. 2005a. Evaluating the effectiveness of Washington State repeated job search services on the employment rate of prime-age female welfare recipients. Mimeo: University of Southern California.Google Scholar
  43. Hsiao, C., and A.K. Tahmiscioglu. 2005. Estimation of dynamic panel data models with both individual and time specific effects. Mimeo.Google Scholar
  44. Im, K., M.H. Pesaran, and Y. Shin. 2003. Testing for unit roots in heterogeneous panels. Journal of Econometrics 115: 53–74.CrossRefGoogle Scholar
  45. Kao, C. 1999. Spurious regression and residual-based tests for cointegration in panel data. Journal of Econometrics 90: 1–44.CrossRefGoogle Scholar
  46. Kyriazidou, E. 1997. Estimation of a panel data sample selection model. Econometrica 65: 1335–1364.CrossRefGoogle Scholar
  47. Lee, M.J. 1999. A root-N-consistent semiparametric estimator for related effects binary response panel data. Econometrica 67: 427–433.CrossRefGoogle Scholar
  48. Levin, A., C. Lin, and J. Chu. 2002. Unit root tests in panel data: Asymptotic and finite sample properties. Journal of Econometrics 108: 21–24.CrossRefGoogle Scholar
  49. Lewbel, A. 1994. Aggregation and simple dynamics. American Economic Review 84: 905–918.Google Scholar
  50. MaCurdy, T.E. 1981. An empirical model of labor supply in a life cycle setting. Journal of Political Economy 89: 1059–1085.CrossRefGoogle Scholar
  51. Manski, C.F. 1987. Semiparametric analysis of random effects linear models from binary panel data. Econometrica 55: 357–362.CrossRefGoogle Scholar
  52. Moon, H.R., and B. Perron. 2004. Testing for a unit root in panels with dynamic factors. Journal of Econometrics 122: 81–126.CrossRefGoogle Scholar
  53. Neyman, J., and E.L. Scott. 1948. Consistent estimates based on partially consistent observations. Econometrica 16: 1–32.CrossRefGoogle Scholar
  54. Nickell, S. 1981. Biases in dynamic models with fixed effects. Econometrica 49: 1399–1416.CrossRefGoogle Scholar
  55. Pakes, A., and Z. Griliches. 1984. Estimating distributed lags in short panels with an application to the specification of depreciation patterns and capital stock constructs. Review of Economic Studies 51: 243–262.CrossRefGoogle Scholar
  56. Pesaran, M.H. 2005. A simple panel unit root test in the presence of cross-section dependence. DAE working paper no. 0346, Cambridge University.Google Scholar
  57. Pesaran, M.H. 2006. Estimation and inference in large heterogeneous panels with a multifactor error structure. Econometrica 74: 967–1012.CrossRefGoogle Scholar
  58. Phillips, P.C. 1986. Understanding spurious regressions in econometrics. Journal of Econometrics 33: 311–340.CrossRefGoogle Scholar
  59. Phillips, P.C., and H.R. Moon. 1999. Linear regression limit theory for nonstationary panel data. Econometrica 67: 1057–1111.CrossRefGoogle Scholar
  60. Rao, C.R. 1973. Linear statistical inference and its applications. 2nd ed. NewYork: Wiley.CrossRefGoogle Scholar
  61. Wansbeek, T.J., and R.H. Koning. 1989. Measurement error and panel data. Statistica Neerlandica 45: 85–92.CrossRefGoogle Scholar
  62. Zilak, J.P. 1997. Efficient estimation with panel data when instruments are predetermined: An empirical comparison of moment-condition estimators. Journal of Business and Economic Statistics 15: 419–431.Google Scholar

Copyright information

© Macmillan Publishers Ltd. 2018

Authors and Affiliations

  • Cheng Hsiao
    • 1
  1. 1.