The New Palgrave Dictionary of Economics

2018 Edition
| Editors: Macmillan Publishers Ltd

Bertrand Competition

  • Michael R. Baye
  • Dan Kovenock
Reference work entry
DOI: https://doi.org/10.1057/978-1-349-95189-5_2462

Abstract

This article presents the classic Bertrand model of oligopolistic price competition and shows how alternative assumptions on economic primitives – such as the structure of demand and cost functions, tie-breaking rules, and product differentiation – shape Nash equilibrium prices and profits. We also discuss the related Bertrand–Edgeworth model of price competition in which consumers may be rationed – either strategically or due to capacity constraints – and illustrate how alternative rationing rules influence equilibrium.

Keywords

Bertrand competition Bertrand equilibrium Bertrand paradox Bertrand, J. L. F. Bertrand–Edgeworth competition best response (reply) capacity Cournot, A. A. duopoly Edgeworth cycles homogeneous products mixed-strategy equilibria monopoly Nash equilibrium oligopoly price competition product differentiation pure-strategy equilibria rationing rules residual monopoly price strategic complements supermodularity winner-take-all 

JEL Classifications

D4 
This is a preview of subscription content, log in to check access.

Bibliography

  1. Baye, M.R., and J. Morgan. 1999. A folk theorem for one–shot Bertrand games. Economics Letters 65: 59–65.CrossRefGoogle Scholar
  2. Baye, M.R., and J. Morgan. 2002. Winner-take-all price competition. Economic Theory 19: 271–282.CrossRefGoogle Scholar
  3. Bertrand, J. 1883. (Review of) Théorie Mathématique de la Richesse Sociale par Léon Walras: Recherches sur les Principes Mathématiques de la Théorie des Richesses par Augustin Cournot. Journal des Savants 67: 499–508.Google Scholar
  4. Bulow, J., J. Geanakoplos, and P. Klemperer. 1985. Multimarket oligopoly: Strategic substitutes and complements. Journal of Political Economy 93: 488–511.CrossRefGoogle Scholar
  5. Cheng, L. 1985. Comparing Bertrand and Cournot equilibria: A geometric approach. RAND Journal of Economics 16: 146–152.CrossRefGoogle Scholar
  6. Cournot, A. 1838. Recherches sur les Principes Mathématiques de la Théorie des Richesses. Paris: Hachette.Google Scholar
  7. Dastidar, K.G. 1995. On the existence of pure strategy Bertrand equilibrium. Economic Theory 5: 19–32.CrossRefGoogle Scholar
  8. Davidson, C., and R. Deneckere. 1986. Long-run competition in capacity, short-run competition in price, and the Cournot model. RAND Journal of Economics 17: 404–415.CrossRefGoogle Scholar
  9. Deneckere, R., and D. Kovenock. 1996. Bertrand–Edgeworth duopoly with unit cost asymmetry. Economic Theory 8: 1–25.CrossRefGoogle Scholar
  10. Edgeworth, F.Y. 1925. The pure theory of monopoly. Papers Relating to Political Economy 1: 111–142.Google Scholar
  11. Häckner, J. 2000. A note on price and quantity competition in differentiated oligopolies. Journal of Economic Theory 93: 223–239.CrossRefGoogle Scholar
  12. Kreps, D.M., and J.A. Scheinkman. 1983. Quantity precommitment and Bertrand competition yield Cournot outcomes. Bell Journal of Economics 14: 326–337.CrossRefGoogle Scholar
  13. Milgrom, P., and J. Roberts. 1990. Rationalizability, learning, and equilibrium in games with strategic complementarities. Econometrica 58: 1255–1277.CrossRefGoogle Scholar
  14. Singh, N., and X. Vives. 1984. Price and quantity competition in a differentiated duopoly. RAND Journal of Economics 15: 546–554.CrossRefGoogle Scholar
  15. Vives, X. 1990. Nash equilibrium with strategic complementarities. Journal of Mathematical Economics 19: 305–321.CrossRefGoogle Scholar

Copyright information

© Macmillan Publishers Ltd. 2018

Authors and Affiliations

  • Michael R. Baye
    • 1
  • Dan Kovenock
    • 1
  1. 1.