The New Palgrave Dictionary of Economics

2018 Edition
| Editors: Macmillan Publishers Ltd

Aggregation (Theory)

  • Werner Hildenbrand
Reference work entry
DOI: https://doi.org/10.1057/978-1-349-95189-5_2456

Abstract

The aim of aggregation theory is to link the micro and macroeconomic notions of aggregate demand. One would like such a link to exist for any heterogeneous population, for a large set of all conceivable income assignments, and for a small number of statistics of the income distribution. This cannot be achieved. What can be achieved is critically discussed in section “Income Aggregation”. In section “Monotone Mean Demand”, another important topic of aggregation theory is considered: how does mean demand react to price changes? As an example, the ‘law of demand’ is discussed.

Keywords

Aggregate demand Aggregation Behavioural heterogeneity Exact income aggregation Law of demand Monotonicity Revealed preferences Slutzky substitution effect 

JEL classifications

C43 
This is a preview of subscription content, log in to check access.

Bibliography

  1. Antonelli, G.B. 1886. Sulla teoria matematica della economia politica. Pisa: Nella Tipografia del Folchetto. Trans. J.S. Chipman and A.P. Kirman in Preferences, utility and demand, ed. J.S. Chipman, L. Hurwicz and M.K. Richter. New York: Harcourt Brace Jovanovich, 1971.Google Scholar
  2. Chiappori, P. 1985. Distribution of income and the law of demand. Econometrica 53: 109–127.CrossRefGoogle Scholar
  3. Chipman, J.S., and J. Moore. 1979. On social welfare functions and the aggregation of preferences. Journal of Economic Theory 21: 111–139.CrossRefGoogle Scholar
  4. Eisenberg, B. 1961. Aggregation of utility functions. Management Science 7: 337–350.CrossRefGoogle Scholar
  5. Gorman, W.M. 1953. Community preference fields. Econometrica 21: 63–80.CrossRefGoogle Scholar
  6. Grandmont, J.M. 1992. Transformations of the commodity space, behavioural heterogeneity, and the aggregation problem. Journal of Economic Theory 57: 1–35.CrossRefGoogle Scholar
  7. Härdle, W., W. Hildenbrand, and M. Jerison. 1991. Empirical evidence on the law of demand. Econometrica 59: 1525–1549.CrossRefGoogle Scholar
  8. Heineke, J., and H. Shefrin. 1987. On some global properties of Gorman class demand systems. Economics Letters 25: 155–160.CrossRefGoogle Scholar
  9. Heineke, J., and H. Shefrin. 1988. Exact aggregation and the finite basis property. International Economic Review 29: 525–538.CrossRefGoogle Scholar
  10. Hicks, J.R. 1956. A revision of demand theory. London: Oxford University Press.Google Scholar
  11. Hildenbrand, W. 1983. On the law of demand. Econometrica 51: 997–1019.CrossRefGoogle Scholar
  12. Hildenbrand, W. 1994. Market demand. Princeton: Princeton University Press.CrossRefGoogle Scholar
  13. Hildenbrand, W., and A. Kneip. 2005. On behavioral heterogeneity. Economic Theory 25: 155–169.CrossRefGoogle Scholar
  14. Jorgensen, D.W., L. Lau, and T.M. Stoker. 1982. The transcendental logarithmic model of aggregate consumer behavior. In Advances in econometrics, ed. R.L. Basmann and G.F. Rhodes. Greenwich, CT: JAI Press.Google Scholar
  15. Lau, L. 1982. A note on the fundamental theorem of exact aggregation. Economics Letters 9: 119–126.CrossRefGoogle Scholar
  16. Malinvaud, E. 1956. L’agregation dans les modèles économiques. Cahiers du Seminaire d’Econométrie 4: 69–146.CrossRefGoogle Scholar
  17. Malinvaud, E. 1993. A framework for aggregation theories. Ricerche Economiche 47(2): 107–135.CrossRefGoogle Scholar
  18. Mitjuschin, L.G., and W.M. Polterovich. 1978. Criteria for monotonicity of demand functions [in Russian]. Ekonomika i Matematicheskie Metody 14: 122–128.Google Scholar
  19. Nataf, A. 1948. Sur la possibilité de construction de certains macromodèles. Econometrica 16: 232–244.CrossRefGoogle Scholar
  20. Nelson, R. 1999. An introduction to copulas. In Lecture notes in statistics 139. New York: Springer Verlag.Google Scholar
  21. Trockel, W. 1984. Market demand: An analysis of large economies with nonconvex preferences. In Lecture notes in economics and mathematical systems 223. Heidelberg: Springer Verlag.Google Scholar

Copyright information

© Macmillan Publishers Ltd. 2018

Authors and Affiliations

  • Werner Hildenbrand
    • 1
  1. 1.