The New Palgrave Dictionary of Economics

2018 Edition
| Editors: Macmillan Publishers Ltd

Gale, David (1921–2008)

  • Joel Sobel
Reference work entry


This article reviews the research of David Gale, who made lasting contributions to game theory, general equilibrium theory, and growth theory. In addition to his influence on the development of economic theory, his work has had important implications for many branches of mathematics and on mathematical education.


Assignment problem Competitive equilibrium Convexity Debreu, G. Existence of competitive equilibrium Gale, David Gale–Shapley algorithm Game theory Global univalence Kuhn, H. Linear inequalities Matching Mathsite Nikaido, H. Ramsey, F. Shapley, L. Tucker, A.W. von Neumann, John Zero-sum game 
This is a preview of subscription content, log in to check access



I thank Harold Kuhn and Bernhard von Stengel for helpful comments. Sobel (2009) is a more detailed overview of David Gale’s research contributions.


  1. Arrow, K.J., and F.H. Hahn. 1971. General competitive analysis. San Francisco: Holden–Day.Google Scholar
  2. Debreu, G. 1956. Market equilibrium. Proceedings of the National Academy of Sciences 42: 876–878.CrossRefGoogle Scholar
  3. Grünbaum, B. 2003. Convex Polytopes. 2nd ed. New York: Springer.CrossRefGoogle Scholar
  4. Knuth, D.E. 1976. Mariages Stables et leurs Relations avec d’Autres Problèmes Combinatoires: Introduction à l’Analyse Mathématique des Algorithmes. Montréal: Presses de l’Université de Montréal. (Trans. as Stable marriage and its relation to other combinatorial problems: An introduction to the mathamatical analysis of algorithms. CRM proceedings and lecture notes, vol. 10. American Mathematical Society, 1997.)Google Scholar
  5. Majumdar, M., eds. 1992. Equilibrium and dynamics: Essays in honour of David Gale. London: Macmillan.Google Scholar
  6. Martin, D.A. 1975. Borel determinacy. Annals of Mathematics, 2nd series, 102: 363–371.Google Scholar
  7. Mycielski, J. 1964. On the axiom of determinateness. Fundamenta Mathematicae 53: 205–224.CrossRefGoogle Scholar
  8. Nikaido, H. 1956. On the classical multilateral exchange problem. Metroeconomica 8: 135–145.CrossRefGoogle Scholar
  9. Roth, A.E. 2008. Deferred acceptance algorithms: History, theory, practice, and open questions. International Journal of Game Theory 36: 537–569.CrossRefGoogle Scholar
  10. Roth, A.E., and M. Sotomayor. 1990. Two-sided matching: A study in game – Theoretic modeling and analysis, Econometric society monograph series. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  11. Shapley, L.S., and M. Shubik. 1971. The assignment game I: The core. International Journal of Game Theory 1: 111–130.CrossRefGoogle Scholar
  12. Sobel, J. 2009. Regale: Some memorable results. Games and Economic Behavior (forthcoming).Google Scholar
  13. von Neumann, J. 1937. Über ein ökonomisches Gleichungssystem und eine Verallgemeinerung des Brouwerschen Fixpunktzatzes. Ergebnisse eines mathematischen Kolloquiums 8, Wien. [Trans. as A model of general economic equilibrium. Review of Economic Studies 13: 1–9, 1945–1946.]Google Scholar

Copyright information

© Macmillan Publishers Ltd. 2018

Authors and Affiliations

  • Joel Sobel
    • 1
  1. 1.