The New Palgrave Dictionary of Economics

2018 Edition
| Editors: Macmillan Publishers Ltd

Factor Models

  • Jushan Bai
Reference work entry
DOI: https://doi.org/10.1057/978-1-349-95189-5_2298

Abstract

Factor models explain correlations among a set of variables. By postulating that the variables are linked with a small number of latent components, factor models imply a particular structure for the correlation matrix. This article discusses the model’s identification and estimation as well as their applications in economics.

Keywords

Approximate factor model Arbitrage pricing theory Cointegration Common factors Covariance matrix Diffusion index forecasting Dynamic factors Factor analysis Factor models Forecasting Principal components analysis Sample correlation matrix Unit roots 
This is a preview of subscription content, log in to check access

Bibliography

  1. Anderson, T.W. 1984. An introduction to multivariate statistical analysis. New York: Wiley.Google Scholar
  2. Angelini, E., Henry, J. and Mestre, R. 2001. Diffusion index-based inflation forecasts for the Euro area. Working Paper No. 6, European Central Bank.Google Scholar
  3. Bai, J. 2003. Inferential theory for factor models of large dimensions. Econometrica 71: 135–173.CrossRefGoogle Scholar
  4. Bai, J. 2004. Estimating cross-section common stochastic trends in nonstationary panel data. Journal of Econometrics 122: 137–183.CrossRefGoogle Scholar
  5. Bai, J., and S. Ng. 2002. Determining the number of factors in approximate factor models. Econometrica 70: 191–221.CrossRefGoogle Scholar
  6. Bai, J., and S. Ng. 2004. A panic attack on unit roots and cointegration. Econometrica 72: 1127–1177.CrossRefGoogle Scholar
  7. Bai, J., and S. Ng. 2006a. Confidence intervals for diffusion index forecasts and inference for factor-augmented regressions. Econometrica 74: 1133–1150.CrossRefGoogle Scholar
  8. Bai, J. and Ng, S. 2006b. Forecasting using targeted predictors. Unpublished manuscript, Department of Economics, New York University.Google Scholar
  9. Banerjee, A., M. Marcellino, and C. Osbat. 2005. Testing for PPP: Should we use panel methods? Empirical Economics 30: 77–91.CrossRefGoogle Scholar
  10. Bernanke, B., and J. Boivin. 2003. Monetary policy in a data rich environment. Journal of Monetary Economics 50: 525–546.CrossRefGoogle Scholar
  11. Breitung, J., and M.H. Pesaran. 2008. Unit roots and cointegration in panels. In The econometrics of panel data, 3rd ed., ed. L. Matyas and P. Sevestre. Dordrecht: Kluwer.Google Scholar
  12. Brillinger, D.R. 1981. Time series: Data analysis and theory. San Francisco: Holden-Day.Google Scholar
  13. Chamberlain, G., and M. Rothschild. 1983. Arbitrage, factor structure and meanvariance analysis in large asset markets. Econometrica 51: 1305–1324.CrossRefGoogle Scholar
  14. Choi, I. 2006. Nonstationary panels. In The Palgrave handbook of econometrics, ed. T. Mills and K. Patterson, vol. 1. Basingstoke: Palgrave Macmillan.Google Scholar
  15. Connor, G., and R. Korajzcyk. 1986. Performance measurement with the arbitrage pricing theory: A new framework for analysis. Journal of Financial Economics 15: 373–394.CrossRefGoogle Scholar
  16. Fan, J., Fan, Y. and Lv, J. 2006. High dimensional covariance matrix estimation using a factor model. Unpublished manuscript, Princeton University.Google Scholar
  17. Forni, M., M. Hallin, M. Lippi, and L. Reichlin. 2000. The generalized dynamic factor model: Identification and estimation. Review of Economics and Statistics 82: 540–554.CrossRefGoogle Scholar
  18. Geweke, J., and K.J. Singleton. 1981. Maximum likelihood confirmatory factor analysis of economic time series. International Economic Review 22: 37–54.CrossRefGoogle Scholar
  19. Lawley, D.N., and A.E. Maxwell. 1971. Factor analysis as a statistical method. London: Butterworth.Google Scholar
  20. Ledoit, O., and M. Wolf. 2003. Improved estimation of the covariance matrix of stock returns with an application to portfolio selection. Journal of Empirical Finance 10: 603–621.CrossRefGoogle Scholar
  21. Ledoit, O., and M. Wolf. 2004. A well-conditioned estimator for large-dimensional covariance matrices. Journal of Multivariate Analysis 88: 365–411.CrossRefGoogle Scholar
  22. Lintner, J. 1965. Security prices, risk, and maximal gains from diversification. Journal of Finance 20: 587–615.Google Scholar
  23. Mardia, K.V., J.T. Kent, and J.M. Bibby. 1979. Multivariate analysis. New York: Academic Press.Google Scholar
  24. Moon, H.R., and B. Perron. 2004. Testing for unit root in panels with dynamic factors. Journal of Econometrics 122: 81–126.CrossRefGoogle Scholar
  25. Phillips, P.C.B., and D. Sul. 2003. Dynamic panel estimation and homogeneity testing under cross section dependence. Econometrics Journal 6: 217–259.CrossRefGoogle Scholar
  26. Quah, D., and T. Sargent. 1993. A dynamic index model for large cross sections. In Business cycles, indicators and forecasting, ed. J. Stock and M. Watson. Chicago: University of Chicago Press.Google Scholar
  27. Ross, S. 1976. The arbitrage theory of capital asset pricing. Journal of Finance 13: 341–360.Google Scholar
  28. Sargent, T., and C. Sims. 1977. Business cycle modelling without pretending to have too much a priori economic theory. In New methods in business cycle research, ed. C. Sims. Minneapolis: Federal Reserve Bank of Minneapolis.Google Scholar
  29. Sharpe, W. 1964. Capital asset prices: A theory of market equilibrium under conditions of risk. Journal of Finance 19: 425–442.Google Scholar
  30. Stock, J.H., and M.W. Watson. 2002a. Forecasting using principal components from a large number of predictors. Journal of the American Statistical Association 97: 1167–1179.CrossRefGoogle Scholar
  31. Stock, J.H., and M.W. Watson. 2002b. Macroeconomic forecasting using diffusion indexes. Journal of Business and Economic Statistics 20(2): 147–162.CrossRefGoogle Scholar

Copyright information

© Macmillan Publishers Ltd. 2018

Authors and Affiliations

  • Jushan Bai
    • 1
  1. 1.