The New Palgrave Dictionary of Economics

2018 Edition
| Editors: Macmillan Publishers Ltd

Logit Models of Individual Choice

  • Thierry Magnac
Reference work entry
DOI: https://doi.org/10.1057/978-1-349-95189-5_2145

Abstract

The logit model was named by Berkson after probit, its close competitor; the two are the most popular econometric methods used in applied work to estimate models for binary variables. It can be easily extended to the treatment of multinomial variables and enjoys specific properties in panel data binary models. Increasingly flexible logit models have also been elaborated for demand analyses. Their development has been stimulated by the increasing availability of databases on individual discrete choices. Because generalized logit models belong to the class of random utility models, their use has promoted sound applied economic research in demand analysis.

Keywords

Asymptotic least squares Conditional likelihood Discrete choices General extreme value distributions Generalized linear models Incidental parameters Independence of irrelevant alternatives Logit models of individual choice Maximum likelihood Method of moments Minimum distance Mixture models Probit models Random utility models Simulation methods Spatial statistics Statistical mechanics Two-level nested logit 
This is a preview of subscription content, log in to check access

Bibliography

  1. Amemiya, T. 1985. Advanced econometrics. Cambridge, MA: Harvard University Press.Google Scholar
  2. Andersen, E.B. 1973. Conditional inference and models for measuring. Copenhagen: Mentalhygiejnisk Forlag.Google Scholar
  3. Anderson, S.P., A. de Palma, and J.F. Thisse. 1992. Discrete choice theory of product differentiation. Cambridge, MA: MIT Press.Google Scholar
  4. Arellano, M. 2003. Discrete choices with panel data. Investigaciones Economicas 27: 423–458.Google Scholar
  5. Berkson, J. 1944. Application of the logistic function to bioassay. Journal of the American Statistical Association 39: 357–365.Google Scholar
  6. Berkson, J. 1951. Why I prefer logits to probits. Biometrics 7: 327–339.CrossRefGoogle Scholar
  7. Berkson, J. 1955. Maximum likelihood and minimum chi-square estimates of the logistic function. Journal of the American Statistical Association 50: 130–162.Google Scholar
  8. Berry, S.T., J.A. Levinsohn, and A. Pakes. 1995. Automobile prices in market equilibrium. Econometrica 63: 841–890.CrossRefGoogle Scholar
  9. Chamberlain, G. 1984. Panel data. In Handbook of econometrics, ed. Z. Griliches and M. Intriligator, Vol. 2. Amsterdam: North-Holland.Google Scholar
  10. Chamberlain, G. 1992. Binary response models for panel data: Identification and information. Cambridge: Harvard University.Google Scholar
  11. Dagsvik, J. 2002. Discrete choice in continuous time: Implications of an intertemporal version of IAA. Econometrica 70: 817–831.CrossRefGoogle Scholar
  12. Gouriéroux, C. 2000. Econometrics of qualitative dependent variables. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  13. Gouriéroux, C., A. Monfort, and A. Trognon. 1985. Moindres carrés asymptotiques. Annales de l’INSEE 58: 91–121.Google Scholar
  14. Horowitz, J. 1998. Semiparametric methods in econometrics. Berlin: Springer.CrossRefGoogle Scholar
  15. Horowitz, J.L., and N.E. Savin. 2001. Binary response models: Logits, probits and semiparametrics. Journal of Economic Perspectives 15(4): 43–56.CrossRefGoogle Scholar
  16. Lancaster, T. 2000. The incidental parameter problem since 1948. Journal of Econometrics 95: 391–413.CrossRefGoogle Scholar
  17. Lewbel, A. 2000. Semiparametric qualitative response model estimation with unknown heteroskedasticity or instrumental variables. Journal of Econometrics 97: 145–177.CrossRefGoogle Scholar
  18. Luce, R. 1959. Individual choice behavior: A theoretical analysis. New York: Wiley.Google Scholar
  19. Magnac, T. 2004. Panel binary variables and sufficiency: Generalizing conditional logit. Econometrica 72: 1859–1877.CrossRefGoogle Scholar
  20. Manski, C.F. 1975. The maximum score estimation of the stochastic utility model of choice. Journal of Econometrics 3: 205–228.CrossRefGoogle Scholar
  21. Manski, C.F. 1988. Identification of binary response models. Journal of the American Statistical Association 83: 729–738.CrossRefGoogle Scholar
  22. Marschak, J. 1960. Binary choice constraints and random utility indicators. In Mathematical methods in the social sciences, ed. K. Arrow. Stanford: Stanford University Press.Google Scholar
  23. Matzkin, R. 1992. Nonparametric and distribution-free estimation of the binary threshold crossing and the binary choice models. Econometrica 60: 239–270.CrossRefGoogle Scholar
  24. McCullagh, P., and J.A. Nelder. 1989. Generalized linear models. London: Chapman and Hall.CrossRefGoogle Scholar
  25. McFadden, D. 1974. Conditional logit analysis of qualitative choice behavior. In Frontiers in econometrics, ed. P. Zarembka. New York: Academic Press.Google Scholar
  26. McFadden, D. 1984. Econometric analysis of qualitative response models. In Handbook of econometrics, ed. Z. Griliches and M.D. Intriligator, Vol. 2. Amsterdam: North-Holland.Google Scholar
  27. McFadden, D. 2001. Economic choices. American Economic Review 91: 351–378.CrossRefGoogle Scholar
  28. McFadden, D., and K. Train. 2000. Mixed MNL models for discrete responses. Journal of Applied Econometrics 15: 447–470.CrossRefGoogle Scholar
  29. Rasch, G. 1960. Probabilistic models for some intelligence and attainment tests. Copenhagen: Denmark Paedagogiske Institut.Google Scholar
  30. Resnick, S.I., and R. Roy. 1991. Random USC functions, max stable process and continuous choice. Annals of Applied Probability 1: 267–292.CrossRefGoogle Scholar
  31. Strauss, D. 1992. The many faces of logistic regression. American Statistician 46: 321–327.Google Scholar
  32. Theil, H. 1969. A multinomial extension of the linear logit model. International Economic Review 10: 251–259.CrossRefGoogle Scholar
  33. Thurstone, L. 1927. A law of comparative judgement. Psychological Review 34: 273–286.CrossRefGoogle Scholar
  34. Train, K. 2003. Discrete choice methods with simulation. Cambridge: Cambridge University Press.CrossRefGoogle Scholar

Copyright information

© Macmillan Publishers Ltd. 2018

Authors and Affiliations

  • Thierry Magnac
    • 1
  1. 1.