The New Palgrave Dictionary of Economics

2018 Edition
| Editors: Macmillan Publishers Ltd

Non-linear Panel Data Models

  • Ekaterini Kyriazidou
Reference work entry
DOI: https://doi.org/10.1057/978-1-349-95189-5_2094

Abstract

Panel or longitudinal data are becoming increasingly popular in applied work as they offer a number of advantages over pure cross-sectional or pure time-series data. They allow researchers to model unobserved heterogeneity at the level of the observational unit, where the latter may be an individual, a household, a firm or a country. This article describes several estimation methods that are available for nonlinear panel data models, that is, models which are nonlinear in the parameters of interest and which include models that arise frequently in applied work, such as discrete choice models and limited dependent variable models, among others.

Keywords

Conditional maximum likelihood Conditioning variables Fixed effects;heteroskedasticity Incidental parameters Individual effects Logit models Longitudinal data Nonlinear panel data models Quadrature procedures Random effects Random variables Tobit models 

JEL Classifications

C23 C33 
This is a preview of subscription content, log in to check access.

Bibliography

  1. Ahn, H., and J.L. Powell. 1993. Semiparametric estimation of censored selection models with a nonparametric selection mechanism. Journal of Econometrics 58: 3–29.CrossRefGoogle Scholar
  2. Andersen, E. 1970. Asymptotic properties of conditional maximum likelihood estimators. Journal of the Royal Statistical Society, Series B 32: 283–301.Google Scholar
  3. Anderson, T., and C. Hsiao. 1981. Estimation of dynamic models with error components. Journal of the American Statistical Association 76(375): 598–606.CrossRefGoogle Scholar
  4. Butler, J.S., and R. Moffitt. 1982. A computationally efficient quadrature procedure for the one-factor multinomial probit model. Econometrica 50: 761–764.CrossRefGoogle Scholar
  5. Chamberlain, G. 1984. Panel data. In Handbook of econometrics, ed. Z. Griliches and M. Intrilligator, Vol. 2. Amsterdam: North-Holland.Google Scholar
  6. Chamberlain, G. 1985. Heterogeneity, omitted variable bias, and duration dependence. In Longitudinal analysis of labor market data, ed. J.J. Heckman and B. Singer. Cambridge: Cambridge University Press.Google Scholar
  7. Fristedt, B., and L. Gray. 1997. A modern approach to probability theory. Boston: Birkhauser.CrossRefGoogle Scholar
  8. Honoré, B.E. 1992. Trimmed LAD and least squares estimation of truncated and censored regression models with fixed effects. Econometrica 60: 533–565.CrossRefGoogle Scholar
  9. Honoré, B.E. 1993. Orthogonality conditions for Tobit models with fixed effects and lagged dependent variables. Journal of Econometrics 59: 35–61.CrossRefGoogle Scholar
  10. Honoré, B.E., and E. Kyriazidou. 2000a. Panel data discrete choice models with lagged dependent variables. Econometrica 68: 839–874.CrossRefGoogle Scholar
  11. Honoré, B.E., and E. Kyriazidou. 2000b. Estimation of Tobit-type models with individual specific effects. Econometric Reviews 19: 341–366.CrossRefGoogle Scholar
  12. Hu, L. 2002. Estimation of a censored dynamic panel data model. Econometrica 70: 2499–2517.CrossRefGoogle Scholar
  13. Kyriazidou, E. 1997. Estimation of a panel data sample selection model. Econometrica 65: 1335–1364.CrossRefGoogle Scholar
  14. Kyriazidou, E. 2001. Estimation of dynamic panel data sample selection models. Review of Economic Studies 68: 543–572.CrossRefGoogle Scholar
  15. Magnac, T. 2000. Subsidised training and youth employment: Distinguishing unobserved heterogeneity from state dependence in labour market histories. Economic Journal 110: 805–837.CrossRefGoogle Scholar
  16. Manski, C. 1987. Semiparametric analysis of random effects linear models from binary panel data. Econometrica 55: 357–362.CrossRefGoogle Scholar
  17. Newey, W. 1994. The asymptotic variance of semiparametric estimators. Econometrica 62: 1349–1382.CrossRefGoogle Scholar
  18. Neyman, J., and E.L. Scott. 1948. Consistent estimation from partially consistent observations. Econometrica 16: 1–32.CrossRefGoogle Scholar
  19. Powell, J.L. 2001. Semiparametric estimation of bivariate latent variable models. In Nonlinear statistical modeling: Proceedings of the thirteenth International Symposium in Economic Theory and Econometrics: Essays in honor of Takeshi Amemiya, ed. C. Hsiao, K. Morimune, and J.L. Powell. Cambridge: Cambridge University Press.Google Scholar
  20. Wooldridge, J.M. 2000. A framework for estimating dynamic, unobserved effects panel data models with possible feedback to future explanatory variables. Economics Letters 68: 245–250.CrossRefGoogle Scholar

Copyright information

© Macmillan Publishers Ltd. 2018

Authors and Affiliations

  • Ekaterini Kyriazidou
    • 1
  1. 1.