The New Palgrave Dictionary of Economics

2018 Edition
| Editors: Macmillan Publishers Ltd

Model Averaging

  • Gernot Doppelhofer
Reference work entry


Model averaging estimates the distribution of quantities of interest across models. Model averaging can be used for inference, prediction and policy analysis to address model uncertainty. Three main approaches are discussed: Bayesian model averaging (BMA), empirical Bayes (EB) methods, and frequentist model averaging (FMA). Differences in prior specifications are contrasted using the example of normal, linear regression models. Finally, the article discusses implementation issues such as numerical simulation techniques and software for model averaging.


Bayes’ rule Bayesian estimation Bayesian model averaging Empirical Bayes methods Exchangeability Frequentist model averaging Homoskedasticity Likelihood Markov chain Monte Carlo methods Metropolis–Hastings algorithm Model averaging Model selection criteria Model uncertainty Posterior model probabilities Sensitivity analysis Statistical decision theory Stochastic search variable selection 

JEL Classifications

C10 C50 D81 E52 O40 
This is a preview of subscription content, log in to check access.


  1. Avramov, D. 2002. Stock return predictability and model uncertainty. Journal of Financial Economics 64: 423–458.CrossRefGoogle Scholar
  2. Bernardo, J.M., and A.F.M. Smith. 1994. Bayesian theory. New York: Wiley.CrossRefGoogle Scholar
  3. Brock, W.A., and S.N. Durlauf. 2001. Growth empirics and reality. World Bank Economic Review 15: 229–272.CrossRefGoogle Scholar
  4. Brock, W.A., S.N. Durlauf, and K. West. 2003. Policy evaluation in uncertain economic environments. Brookings Papers on Economic Activity 2003(1): 235–322.CrossRefGoogle Scholar
  5. Burnham, K.P., and D.R. Anderson. 2002. Model selection and multimodel inference: A practical information-theoretic approach. 2nd ed. New York: Springer.Google Scholar
  6. Carlin, B.P., and T.A. Louis. 2000. Bayes and empirical Bayes Methods for data analysis. 2nd ed. New York: Chapman & Hall.CrossRefGoogle Scholar
  7. Casella, G., and E.I. George. 1992. Explaining the Gibbs sampler. The American Statistician 46: 167–174.Google Scholar
  8. Chib, S. 2001. Markov chain Monte Carlo methods: Computation and inference. In Handbook of econometrics, ed. J. Heckman and E. Leamer, vol. 5. Amsterdam: North- Holland Pub. Co..Google Scholar
  9. Chib, S., and E. Greenberg. 1995. Understanding the Metropolis–Hastings algorithm. The American Statistician 49: 327–335.Google Scholar
  10. Chipman, H., E.I. George, and R.E. McCulloch. 2001. The practical implementation of Bayesian model selection. In Model selection. IMS lecture notes: Monograph series, ed. P. Lahiri. Beachwood: Institute of Mathematical Statistics.Google Scholar
  11. Clyde, M., H. Desimone, and G. Parmigiani. 1996. Prediction via orthogonalized model mixing. Journal of the American Statistical Association 91: 1197–1208.CrossRefGoogle Scholar
  12. Doppelhofer, G. and M. Weeks. 2007. Jointness of growth determinants. Journal of Applied Econometrics.Google Scholar
  13. Draper, D. 1995. Assessment and propagation of model uncertainty (with discussion). Journal of the Royal Statistical Society B 57: 45–97.Google Scholar
  14. Fernandez, C., E. Ley, and M.F.J. Steel. 2001a. Model uncertainty in cross-country growth regressions. Journal of Applied Econometrics 16: 563–576.CrossRefGoogle Scholar
  15. Fernandez, C., E. Ley, and M.F.J. Steel. 2001b. Benchmark priors for Bayesian model averaging. Journal of Econometrics 100: 381–427.CrossRefGoogle Scholar
  16. Garratt, A., K. Lee, M.H. Pesaran, and Y. Shin. 2003. Forecast uncertainties in macroeconomic modelling: An application to the U.K. economy. Journal of the American Statistical Association 98: 829–838.CrossRefGoogle Scholar
  17. George, E.I. 1999. Discussion of Bayesian model averaging and model search strategies by M.A. Clyde. Bayesian Statistics 6: 175–177.Google Scholar
  18. George, E.I., and D.P. Foster. 2000. Calibration and empirical Bayes variable selection. Biometrika 87: 731–747.CrossRefGoogle Scholar
  19. George, E., and R.E. McCulloch. 1993. Variable selection via Gibbs sampling. Journal of the American Statistical Association 88: 881–889.CrossRefGoogle Scholar
  20. Geweke, J. 1989. Bayesian inference in econometric models using Monte Carlo integration. Econometrica 57: 1317–1339.CrossRefGoogle Scholar
  21. Geweke, J., and C. Whiteman. 2006. Bayesian forecasting. In Handbook of economic forecasting, ed. G. Elliott, C.W.J. Granger, and A. Timmermann, vol. 1. Amsterdam: North-Holland.Google Scholar
  22. Gilks, W., S. Richardson, and D. Spiegelhalter. 1996. Markov Chain Monte Carlo in practice. New York: Chapman & Hall.Google Scholar
  23. Hansen, B.E. 2007. Least squares model averaging. Econometrica 75: 1175–1189.CrossRefGoogle Scholar
  24. Hjort, N.L., and G. Claeskens. 2003. Frequentist model averaging. Journal of the American Statistical Association 98: 879–899.CrossRefGoogle Scholar
  25. Hoeting, J.A., D. Madigan, A.E. Raftery, and C.T. Volinsky. 1999. Bayesian model averaging: A tutorial. Statistical Science 14: 382–417.CrossRefGoogle Scholar
  26. Jeffreys, H. 1961. Theory of probability. 3rd ed. Oxford: Clarendon Press.Google Scholar
  27. Kass, R.E., and A.E. Raftery. 1995. Bayes factors. Journal of the American Statistical Association 90: 773–795.CrossRefGoogle Scholar
  28. Kass, R.E., and L. Wasserman. 1995. A reference Bayesian test for nested hypotheses and its relationship to the Schwarz criterion. Journal of the American Statistical Association 90: 928–934.CrossRefGoogle Scholar
  29. Klein, R.W., and S.J. Brown. 1984. Model selection when there is ‘minimal’ prior information. Econometrica 52: 1291–1312.CrossRefGoogle Scholar
  30. Koop, G. 2003. Bayesian econometrics. Chichester: Wiley.Google Scholar
  31. Leamer, E. 1978. Specification searches. New York: Wiley.Google Scholar
  32. Levin, A.T., and J.C. Williams. 2003. Robust monetary policy with competing reference models. Journal of Monetary Economics 50: 945–975.CrossRefGoogle Scholar
  33. Madigan, D., and J. York. 1995. Bayesian graphical models for discrete data. International Statistical Review 63: 215–232.CrossRefGoogle Scholar
  34. Mitchell, T.J., and J.J. Beauchamp. 1988. Bayesian variable selection in linear regression. Journal of the American Statistical Association 83: 1023–1032.CrossRefGoogle Scholar
  35. Raftery, A.E. 1995. Bayesian model selection in social research. Sociological Methodology 25: 111–163.CrossRefGoogle Scholar
  36. Raftery, A.E., D. Madigan, and J.A. Hoeting. 1997. Bayesian model averaging for linear regression models. Journal of the American Statistical Association 92: 179–191.CrossRefGoogle Scholar
  37. Raftery, A.E., D. Madigan, and C.T. Volinsky. 1996. Accounting for model uncertainty in survival analysis improves predictive performance. Bayesian Statistics 5: 323–349.Google Scholar
  38. Sala-i-Martin, X., G. Doppelhofer, and R.M. Miller. 2004. Determinants of economic growth: A Bayesian averaging of classical estimates (BACE) approach. American Economic Review 94: 813–835.CrossRefGoogle Scholar
  39. Schwarz, G. 1978. Estimating the dimension of a model. Annals of Statistics 6: 461–464.CrossRefGoogle Scholar
  40. Wasserman, L. 2000. Bayesian model selection and model averaging. Journal of Mathematical Psychology 44: 92–107.CrossRefGoogle Scholar
  41. Yang, Y. 2001. Adaptive regression by mixing. Journal of the American Statistical Association 96: 574–588.CrossRefGoogle Scholar
  42. Yuan, Z., and Y. Yang. 2005. Combining linear regression models: When and how? Journal of the American Statistical Association 100: 1202–1214.CrossRefGoogle Scholar
  43. Zellner, A. 1986. On assessing prior distributions and Bayesian regression analysis with g-prior distributions. In Bayesian inference and decision techniques: Essays in honor of Bruno de Finetti, ed. P.K. Goel and A. Zellner. Amsterdam: North-Holland.Google Scholar

Model Averaging Software and Codes

  1. LeSage’s Econometrics Toolbox:

Copyright information

© Macmillan Publishers Ltd. 2018

Authors and Affiliations

  • Gernot Doppelhofer
    • 1
  1. 1.