The New Palgrave Dictionary of Economics

2018 Edition
| Editors: Macmillan Publishers Ltd

Stochastic Frontier Models

  • Hung-Jen Wang
Reference work entry
DOI: https://doi.org/10.1057/978-1-349-95189-5_2054

Abstract

The stochastic frontier model was first proposed in the context of production function estimation to account for the effect of technical inefficiency. The inefficiency causes actual output to fall below the potential level (that is, the production frontier) and also raises production cost above the minimum level (that is, the cost frontier). Recent applications of the model are found in many fields of study including labour, finance, and economic growth. In these applications, the observed outcome (of wages, investment, and so on) is modelled as being deviating from a frontier level in one direction owing to factors such as information asymmetry.

Keywords

Aftermarkets Allocative inefficiency Convergence Copulas Cost functions Duality Financing constraints Fixed-effect panel estimators Labour market search models Likelihood functions Nonparametric estimation Production function estimation Production functions Semiparametric estimation Stochastic cost frontiers Stochastic frontier models Technical inefficiency Technological catch-up Truncated distributions 

JEL Classifications

C51 
This is a preview of subscription content, log in to check access.

Bibliography

  1. Aigner, D., C.A.K. Lovell, and P. Schmidt. 1977. Formulation and estimation of stochastic frontier production function models. Journal of Econometrics 6: 21–37.CrossRefGoogle Scholar
  2. Battese, G.E., and T.J. Coelli. 1988. Prediction of firm-level technical efficiencies with a generalized frontier production function and panel data. Journal of Econometrics 38: 387–399.CrossRefGoogle Scholar
  3. Greene, W.H. 1980. On the estimation of a flexible frontier production model. Journal of Econometrics 13: 101–115.CrossRefGoogle Scholar
  4. Hofler, R.A., and K.J. Murphy. 1992. Underpaid and overworked: Measuring the effect of imperfect information on wages. Economic Inquiry 30: 511–529.CrossRefGoogle Scholar
  5. Hunt-McCool, J., S.C. Koh, and B.B. Francis. 1996. Testing for deliberate underpricing in the IPO premarket: A stochastic frontier approach. Review of Financial Studies 9: 1251–1269.CrossRefGoogle Scholar
  6. Jondrow, J., C.A.K. Lovell, I.S. Materov, and P. Schmidt. 1982. On the estimation of technical inefficiency in the stochastic frontier production function model. Journal of Econometrics 19: 233–238.CrossRefGoogle Scholar
  7. Kumbhakar, S.C. 1997. Modeling allocative inefficiency in a translog cost function and cost share equations: An exact relationship. Journal of Econometrics 76: 351–356.CrossRefGoogle Scholar
  8. Kumbhakar, S.C., and C.A.K. Lovell. 2000. Stochastic frontier analysis. Cambridge, UK/ New York: Cambridge University Press.CrossRefGoogle Scholar
  9. Kumbhakar, S.C., and E.G. Tsionas. 2005. The joint measurement of technical and allocative inefficiencies: An application of Bayesian inference in nonlinear random-effects models. Journal of the American Statistical Association 100: 736–747.CrossRefGoogle Scholar
  10. Kumbhakar, S.C., and H.-J. Wang. 2005. Estimation of growth convergence using a stochastic production frontier approach. Economics Letters 3: 300–305.CrossRefGoogle Scholar
  11. Kumbhakar, S.C., and H.-J. Wang. 2006. Estimation of technical and allocative inefficiency: A primal system approach. Journal of Econometrics 134: 419–440.CrossRefGoogle Scholar
  12. Meeusen, W., and J. van den Broeck. 1977. Technical efficiency and dimension of the firm: Some results on the use of frontier production functions. Empirical Economics 2: 109–122.CrossRefGoogle Scholar
  13. Schmidt, P., and T.F. Lin. 1984. Simple tests of alternative specifications in stochastic frontier models. Journal of Econometrics 24: 349–361.CrossRefGoogle Scholar
  14. Schmidt, P., and C.A.K. Lovell. 1979. Estimating technical and allocative inefficiency relative to stochastic production and cost frontiers. Journal of Econometrics 9: 343–366.CrossRefGoogle Scholar
  15. Schmidt, P., and R.C. Sickles. 1984. Production frontiers and panel data. Journal of Business and Economic Statistics 2: 367–374.Google Scholar
  16. Wang, H.-J. 2003. A stochastic frontier analysis of financing constraints on investment: The case of financial liberalization in Taiwan. Journal of Business and Economic Statistics 3: 406–419.CrossRefGoogle Scholar

Copyright information

© Macmillan Publishers Ltd. 2018

Authors and Affiliations

  • Hung-Jen Wang
    • 1
  1. 1.