The New Palgrave Dictionary of Economics

2018 Edition
| Editors: Macmillan Publishers Ltd

Markov Chain Monte Carlo Methods

  • Siddhartha Chib
Reference work entry


MCMC methods, an important class of Monte Carlo methods, have played a major role in the growth of Bayesian statistics and econometrics. In an MCMC simulation, one samples a given distribution (say the posterior distribution in a Bayesian model) by simulating a suitably constructed Markov chain whose invariant distribution is the target distribution. The Metropolis–Hastings algorithm and its special case, the Gibbs sampler, are two common ways of devising an MCMC simulation. We discuss how these methods originate, discuss implementation issues and provide examples. The use of MCMC methods in Bayesian prediction and model choice problems is also discussed.


Autocorrelation Bayesian econometrics Bayesian prior–posterior analysis Bayesian statistics Invariance Latent variables Marginal likelihood Markov chain Monte Carlo methods Model choice Prediction Proposal densities Reversibility Transition density 

JEL Classifications

This is a preview of subscription content, log in to check access.


  1. Albert, J.H., and S. Chib. 1993. Bayesian analysis of binary and polychotomous response data. Journal of the American Statistical Association 88: 669–679.CrossRefGoogle Scholar
  2. Basu, S., and S. Chib. 2003. Marginal likelihood and Bayes factors for Dirichlet process mixture models. Journal of the American Statistical Association 98: 224–235.CrossRefGoogle Scholar
  3. Carlin, B.P., and S. Chib. 1995. Bayesian model choice via Markov chain Monte Carlo. Journal of the Royal Statistical Society, Series B 57: 473–484.Google Scholar
  4. Chan, K.S. 1993. Asymptotic behavior of the Gibbs sampler. Journal of the American Statistical Association 88: 320–326.Google Scholar
  5. Chen, M.H., Q.M. Shao, and J.G. Ibrahim. 2000. Monte Carlo methods in Bayesian computation. New York: Springer.CrossRefGoogle Scholar
  6. Chib, S. 1995. Marginal likelihood from the Gibbs output. Journal of the American Statistical Association 90: 1313–1321.CrossRefGoogle Scholar
  7. Chib, S. 2001. Markov chain Monte Carlo methods: Computation and inference. In Handbook of econometrics, ed. J.J. Heckman and E. Leamer, Vol. 5. Amsterdam: North-Holland.Google Scholar
  8. Chib, S., and E. Greenberg. 1994. Bayes inference in regression models with ARMA (p,q) errors. Journal of Econometrics 64: 183–206.CrossRefGoogle Scholar
  9. Chib, S., and E. Greenberg. 1995. Understanding the Metropolis–Hastings algorithm. American Statistician 49: 327–335.Google Scholar
  10. Chib, S., and I. Jeliazkov. 2001. Marginal likelihood from the Metropolis–Hastings output. Journal of the American Statistical Association 96: 270–281.CrossRefGoogle Scholar
  11. Dellaportas, P., J.J. Forster, and I. Ntzoufras. 2002. On Bayesian model and variable selection using MCMC. Statistics and Computing 12: 27–36.CrossRefGoogle Scholar
  12. Fahrmeir, L., and G. Tutz. 1994. Multivariate statistical modelling based on generalized linear models. Berlin: Springer.CrossRefGoogle Scholar
  13. Gelfand, A.E., and A.F. Smith. 1990. Sampling-based approaches to calculating marginal densities. Journal of the American Statistical Association 85: 398–409.CrossRefGoogle Scholar
  14. Geman, S., and D. Geman. 1984. Stochastic relaxation, Gibbs distribution and the Bayesian restoration of images. IEEE Transactions, PAMI 6: 721–741.CrossRefGoogle Scholar
  15. George, E.I., and R.E. McCulloch. 1993. Variable selection via Gibbs sampling. Journal of the American Statistical Association 88: 881–889.CrossRefGoogle Scholar
  16. Gilks, W.K., S. Richardson, and D.J. Spiegelhalter. 1996. Markov chain Monte Carlo in practice. London: Chapman & Hall.Google Scholar
  17. Godsill, S.J. 2001. On the relationship between Markov chain Monte Carlo methods for model uncertainty. Journal of Computational and Graphical Statistics 10: 230–248.CrossRefGoogle Scholar
  18. Green, P.J. 1995. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82: 711–732.CrossRefGoogle Scholar
  19. Hastings, W.K. 1970. Monte-Carlo sampling methods using Markov chains and their applications. Biometrika 57: 97–109.CrossRefGoogle Scholar
  20. Jeffreys, H. 1961. Theory of Probability. 3rd edn. Oxford: Oxford University Press.Google Scholar
  21. Liu, J.S. 1994. The collapsed Gibbs sampler in Bayesian computations with applications to a gene-regulation problem. Journal of the American Statistical Association 89: 958–966.CrossRefGoogle Scholar
  22. Liu, J.S. 2001. Monte Carlo strategies in scientific computing. New York: Springer.Google Scholar
  23. Metropolis, N., A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, et al. 1953. Equations of state calculations by fast computing machines. Journal of Chemical Physics 21: 1087–1092.CrossRefGoogle Scholar
  24. Robert, C.P., and G. Casella. 2004. Monte Carlo statistical methods. 2nd edn. New York: Springer.CrossRefGoogle Scholar
  25. Roberts, G.O., and S.K. Sahu. 1997. Updating schemes, correlation structure, blocking and parameterization for the Gibbs sampler. Journal of the Royal Statistical Society, Series B 59: 291–317.CrossRefGoogle Scholar
  26. Roberts, G.O., and A.F.M. Smith. 1994. Simple conditions for the convergence of the Gibbs sampler and Metropolis-Hastings algorithms. Stochastic Processes and their Applications 49: 207–216.CrossRefGoogle Scholar
  27. Tanner, M.A., and W.H. Wong. 1987. The calculation of posterior distributions by data augmentation (with discussion). Journal of the American Statistical Association 82: 528–550.CrossRefGoogle Scholar
  28. Tierney, L. 1994. Markov chains for exploring posterior distributions (with discussion). Annals of Statistics 21: 1701–1762.CrossRefGoogle Scholar
  29. Tierney, L., and A. Mira. 1999. Some adaptive Monte Carlo methods for Bayesian inference. Statistics in Medicine 18: 2507–2515.CrossRefGoogle Scholar

Copyright information

© Macmillan Publishers Ltd. 2018

Authors and Affiliations

  • Siddhartha Chib
    • 1
  1. 1.