The New Palgrave Dictionary of Economics

2018 Edition
| Editors: Macmillan Publishers Ltd

Spatial Econometrics

  • Timothy G. Conley
Reference work entry


Spatial econometrics is concerned with modelling dependent observations indexed by points in a space. Complicated patterns of interdependence can be parsimoniously described in terms of these points’ locations. Covariances between observations, for example, can be modelled as functions of their distances. Index spaces are not limited to the physical space or times inhabited by economic agents and can be as abstract as required by the economics of the application. This entry discusses the use of generalized method of moments and other common estimators with spatial data, as well as simultaneous equation methods specialized to certain types of spatial data.


Data generation processes Generalized method of moments Heteroskedasticity and autocovariance Index space Inference Interactions-based models Kernels Locations/distances Maximum likelihood estimators Nonparametric estimators Simultaneous equations models Simultaneous spatial autoregression Spatial correlation Spatial econometrics Spatial weights matrix Spectral density Spectral methods Time series models Unobservable variables 

JEL Classifications

C21 C31 
This is a preview of subscription content, log in to check access.


  1. Andrews, D. 2005. Cross-section regression with common shocks. Econometrica 73: 1551–1585.CrossRefGoogle Scholar
  2. Anselin, L. 1988. Spatial econometrics: Methods and models. Boston: Kluwer Academic Publishers.CrossRefGoogle Scholar
  3. Anselin, L. 1995. Local indicators of spatial association. Geographical Analysis 27: 93–115.CrossRefGoogle Scholar
  4. Barry, R., and R. Pace. 1999. A Monte Carlo estimator of the log determinant of large sparse matrices. Linear Algebra and its Applications 289: 41–54.CrossRefGoogle Scholar
  5. Bartlett, M. 1955. An introduction to stochastic processes. Cambridge: Cambridge University Press.Google Scholar
  6. Bester, C. 2005a. Random field and affine models for interest rates: An empirical comparison. Working paper. University of Chicago.Google Scholar
  7. Bester, C. 2005b. Bond and option pricing in random field models. Working paper. University of Chicago.Google Scholar
  8. Bolthausen, E. 1982. On the central limit theorem for stationary mixing random fields. Annals of Probability 10: 1047–1050.CrossRefGoogle Scholar
  9. Brock, W., and S. Durlauf. 2001. Interactions-based models. In Handbook of econometrics, 5th edn., ed. J. Heckman and E. Leamer. Amsterdam: North-Holland.Google Scholar
  10. Case, A., J. Hines, and H. Rosen. 1993. Budget spillovers and fiscal policy interdependence: Evidence from the states. Journal of Public Economics 52: 285–307.CrossRefGoogle Scholar
  11. Chen, X., and T. Conley. 2001. A new semiparametric spatial model for panel time series. Journal of Econometrics 105: 59–83.CrossRefGoogle Scholar
  12. Cliff, A., and J. Ord. 1981. Spatial processes. London: Pion Limited.Google Scholar
  13. Conley, T. 1996. Econometric modeling of cross-sectional dependence. Ph.D. thesis. University of Chicago.Google Scholar
  14. Conley, T. 1999. GMM estimation with cross sectional dependence. Journal of Econometrics 92: 1–45.CrossRefGoogle Scholar
  15. Conley, T., and E. Ligon. 2002. Economic distance, spillovers, and cross country comparisons. Journal of Economic Growth 7: 157–187.CrossRefGoogle Scholar
  16. Conley, T., and F. Molinari. 2007. Spatial correlation robust inference with errors in location or distance. Journal of Econometrics 140(1): 76–96.CrossRefGoogle Scholar
  17. Conley, T., and G. Topa. 2002. Socio-economic distance and spatial patterns in unemployment. Journal of Applied Econometrics 17: 303–327.CrossRefGoogle Scholar
  18. Geary, R. 1954. The contiguity ratio and statistical mapping. Incorporated Statistician 5: 115–145.CrossRefGoogle Scholar
  19. Giacomini, F., and C. Granger. 2004. Aggregation of space–time processes. Journal of Econometrics 118: 7–26.CrossRefGoogle Scholar
  20. Grenander, U. and M. Rosenblatt. 1957. Some problems in estimating the spectrum of a time series. In: Proceedings of the third berkeley symposium on mathematical statistics and probability, vol. 7. p. 77–93.Google Scholar
  21. Hansen, L. 1982. Large sample properties of generalized method of moments estimators. Econometrica 50: 1029–1054.CrossRefGoogle Scholar
  22. Kelejian, H., and I. Prucha. 1999. A Generalized moments estimator for the autoregressive parameter in a spatial model. International Economic Review 40: 509–533.CrossRefGoogle Scholar
  23. Kelejian, H., and I. Prucha. 2001. On the asymptotic distribution of the Moran I test statistic with applications. Journal of Econometrics 104: 219–257.CrossRefGoogle Scholar
  24. Kelejian, H., and I. Prucha. 2007. HAC estimation in a spatial framework. Journal of Econometrics 140(1): 131–154.CrossRefGoogle Scholar
  25. Lee, L. 2004a. Asymptotic distributions of quasi-maximum likelihood estimators for spatial autoregressive models. Econometrica 72: 1899–1925.CrossRefGoogle Scholar
  26. Lee, L. 2004b. Identification and estimation of spatial econometric models with group interactions, contextual factors and fixed effects. Working paper. Ohio State University.Google Scholar
  27. Lee, L. 2007. GMM and 2SLS estimation of mixed regressive, spatial autoregressive models. Journal of Econometrics 140(1): 155–189.CrossRefGoogle Scholar
  28. LeSage, J., and R. Pace. 2007. A matrix exponential spatial specification. Journal of Econometrics 140(1): 190–214.CrossRefGoogle Scholar
  29. Mardia, K., and R. Marshall. 1984. Maximum likelihood estimation of models for residual covariance in spatial regression. Biometrika 71: 135–146.CrossRefGoogle Scholar
  30. Martellosio, F. 2004. The correlation structure of spatial autoregressions. Working paper. University of Southampton.Google Scholar
  31. Moran, P. 1950. Notes on continuous stochastic phenomena. Biometrika 37: 17–23.CrossRefGoogle Scholar
  32. Pace, R., and R. Barry. 1997. Quick computation of regressions with a spatially autoregressive dependent variable. Geographical Analysis 29: 232–247.CrossRefGoogle Scholar
  33. Pinkse, J., M. Slade, and C. Brett. 2002. Spatial price competition: A semiparametric approach. Econometrica 70: 1111–1153.CrossRefGoogle Scholar
  34. Priestley, M. 1964. Analysis of two-dimensional processes with discontinous spectra. Biometrika 51: 195–217.Google Scholar
  35. Priestley, M. 1981. Spectral analysis and time series, vol. 2, New York: Academic Press.Google Scholar
  36. Takahata, H. 1983. On the rates in the central limit theorem for weakly dependent random fields. Zeitschrift fur Wahrscheinlichkeitstheorie und verwandte Gebiete 64: 445–456.CrossRefGoogle Scholar
  37. Wall, M. 2004. A close look at the spatial structure implied by the CAR and SAR models. Journal of Statistical Planning and Inference 121: 311–324.CrossRefGoogle Scholar
  38. Whittle, P. 1954. On stationary processes on the plane. Biometrika 2: 434–449.CrossRefGoogle Scholar
  39. Wooldridge, J. 2003. Cluster-sample methods in applied econometrics. American Economic Review 93: 133–138.CrossRefGoogle Scholar

Copyright information

© Macmillan Publishers Ltd. 2018

Authors and Affiliations

  • Timothy G. Conley
    • 1
  1. 1.