The New Palgrave Dictionary of Economics

2018 Edition
| Editors: Macmillan Publishers Ltd

SNP: Nonparametric Time Series Analysis

  • A. Ronald Gallant
Reference work entry
DOI: https://doi.org/10.1057/978-1-349-95189-5_1956

Abstract

SNP is a method of nonparametric multivariate time series analysis. It employs an expansion in Hermite functions to approximate the conditional density of a multivariate process. An appealing feature of the expansion is that it is a nonlinear nonparametric model that directly nests the Gaussian VAR model, the semiparametric ARCH model, the Gaussian GARCH model, and the semiparametric GARCH model. The unrestricted SNP expansion is more general than any of these models. The SNP model is fitted using conventional maximum likelihood together with a model selection strategy that determines the appropriate order of expansion.

Keywords

ARCH models Bootstrap Density GARCH models Kalman filter Kernels Maximum likelihood Method of moment estimation Nonparametric time series analysis Semi-nonparametric (SNP) models Splines Statistical inference Vector autoregressions 

JEL Classifications

C14 
This is a preview of subscription content, log in to check access.

Notes

Bibliography

  1. Bollerslev, T. 1986. Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics 31: 307–327.CrossRefGoogle Scholar
  2. Engle, R.F. 1982. Autoregressive conditional heteroskedasticity with estimates of the variance of United Kingdom inflation. Econometrica 50: 987–1007.CrossRefGoogle Scholar
  3. Engle, R.F., and K.F. Kroner. 1995. Multivariate simultaneous generalized ARCH. Econometric Theory 11: 122–150.CrossRefGoogle Scholar
  4. Fenton, V.M., and A.R. Gallant. 1996. Qualitative and asymptotic performance of SNP density estimators. Journal of Econometrics 74: 77–118.CrossRefGoogle Scholar
  5. Gallant, A.R., D. Hsieh, and G. Tauchen. 1997. Estimation of stochastic volatility models with diagnostics. Journal of Econometrics 81: 159–192.CrossRefGoogle Scholar
  6. Gallant, A.R., and J.R. Long. 1997. Estimating stochastic differential equations efficiently by minimum chi-square. Biometrika 84: 125–141.CrossRefGoogle Scholar
  7. Gallant, A.R., and D.W. Nychka. 1987. Seminonparametric maximum likelihood estimation. Econometrica 55: 363–390.CrossRefGoogle Scholar
  8. Gallant, A.R., P.E. Rossi, and G. Tauchen. 1992. Stock prices and volume. Review of Financial Studies 5: 199–242.CrossRefGoogle Scholar
  9. Gallant, A.R., P.E. Rossi, and G. Tauchen. 1993. Nonlinear dynamic structures. Econometrica 61: 871–907.CrossRefGoogle Scholar
  10. Gallant, A.R., and G. Tauchen. 1989. Seminonparametric estimation of conditionally constrained heterogeneous processes: Asset pricing applications. Econometrica 57: 1091–1120.CrossRefGoogle Scholar
  11. Gallant, A.R., and G. Tauchen. 1992. A nonparametric approach to nonlinear time series analysis: Estimation and simulation. In New directions in time series analysis, part II, ed. D. Brillinger et al. New York: Springer-Verlag.Google Scholar
  12. Gallant, A.R., and G. Tauchen. 1996. Which moments to match? Econometric Theory 12: 657–681.CrossRefGoogle Scholar
  13. Gallant, A.R., and G. Tauchen. 1998. Reprojecting partially observed systems with application to interest rate diffusions. Journal of the American Statistical Association 93: 10–24.CrossRefGoogle Scholar

Copyright information

© Macmillan Publishers Ltd. 2018

Authors and Affiliations

  • A. Ronald Gallant
    • 1
  1. 1.