The New Palgrave Dictionary of Economics

2018 Edition
| Editors: Macmillan Publishers Ltd

Statistics and Economics

  • Aris Spanos
Reference work entry


Some statisticians and economists might find it surprising to learn that statistics and economics share common roots going back to ‘Political Arithmetic’ in the mid-17th century. The primary objective of this article is to revisit the common roots and trace the parallel development of both disciplines up to and including the 20th century, and to attempt to signpost certain methodological lessons that were missed along the way to the detriment of both disciplines. The emphasis is primarily on methodological developments, with less attention paid to institutional developments.


ARIMA models Bayes, T. Bernoulli, J. Bowley, A. L. Central limit theorems Cointegration Convergence in distribution Cournot, A. A. Cowles Commission Davenant, C. Econometric Society Edgeworth, F.Y. Error-correction models Farr, W. Fisher, I. Fisher, R. A. Frequentist approach to inference Galton, F. Gauss, C. F. Gauss–Markov theorem Generalized method of moments Graphical techniques Graunt, J. Haavelmo, T. Heckman, J. J. Hume, D. Identification Index numbers Induction Inverse probability Jevons, W. S. King, G. Koopmans, T. C. Laplace, P.-S. Law of large numbers Least squares Legendre, A.-M. Life tables Marginal revolution Mathematics and economics Mills, F. C. Mortality Neyman, J. Nonparametric methods Pearson, K. Petty, W. Playfair, W. Political arithmetic Political economy Probability Quetelet, A. Reliability of inference Royal Statistical Society Semiparametric methods Simultaneous equations models Specification Spurious regressions Statistical adequacy Statistical description Statistical inference Statistical models Statistical Society of London Statistics and economics Stochastic processes Structural models Unit roots Walras, L. Yule, G. U. 

JEL Classifications

This is a preview of subscription content, log in to check access.


  1. Agresti, A. 2002. Categorical data analysis, 2nd ed. New York: Wiley.CrossRefGoogle Scholar
  2. Backhouse, R.E. 2002a. The ordinary business of life: A history of economics from the ancient to the twenty-first century. Princeton: Princeton University Press.Google Scholar
  3. Backhouse, R.E. 2002b. The Penguin history of economics. London: Penguin Books.Google Scholar
  4. Bartlett, M.S. 1935. Some aspects of the time-correlation problem in regard to tests of significance. Journal of the Royal Statistical Society 98: 536–543.CrossRefGoogle Scholar
  5. Bennett, J.H. 1990. Statistical inference and analysis: Selected correspondence of R.A. Fisher. Oxford: Clarendon Press.Google Scholar
  6. Bernoulli, J. 1713. Ars Conjectandi. Basilea: Thurnisius. Trans. E.D. Sylla. Baltimore: Johns Hopkins University Press, 2006.Google Scholar
  7. Bowley, A.L. 1902/1920/1926/1937. Elements of statistics, 2nd, 4th, 5th, and 6th ed. London: Staples Press.Google Scholar
  8. Bowley, A.L. 1906. Address to the economic science and statistics. Journal of the Royal Statistical Society 69: 540–558.CrossRefGoogle Scholar
  9. Bowley, A.L. 1928. F.Y. Edgeworth’s contributions to mathematical statistics. Clifton: Augustus M. Kelley.Google Scholar
  10. Box, J.F. 1978. R.A. Fisher: The life of a scientist. New York: Wiley.Google Scholar
  11. Box, G.E.P., and G.M. Jenkins. 1970. Time series analysis: Forecasting and control. San Francisco: Holden-Day.Google Scholar
  12. Burns, A.F., and W.C. Mitchell. 1946. Measuring business cycles. New York: NBER.Google Scholar
  13. Cameron, A.C., and P.K. Trivedi. 2005. Microeconometrics: Methods and applications. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  14. Cournot, A. 1843. Exposition de la théorie des chances et des probabilités. Paris: Hachette.Google Scholar
  15. Cox, D.R. 1990. Role of models in statistical analysis. Statistical Science 5: 169–174.CrossRefGoogle Scholar
  16. Cox, D.R. 2006. Principles of statistical inference. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  17. Cox, D.R., and D.V. Hinkley. 1974. Theoretical statistics. London: Chapman & Hall.CrossRefGoogle Scholar
  18. Cramer, H. 1946. Mathematical methods of statistics. Princeton: Princeton University Press.Google Scholar
  19. Davis, H.T., and W.F.C. Nelson. 1935. Elements of statistics. Indiana: Principia Press.Google Scholar
  20. Desrosières, A. 1998. The politics of large numbers: A history of statistical reasoning. Cambridge, MA: Harvard University Press.Google Scholar
  21. Dickey, D.A., and W.A. Fuller. 1979. Distribution of the estimators for autoregressive time series with a unit root. Journal of the American Statistical Association 74: 427–431.Google Scholar
  22. Doob, J.L. 1953. Stochastic processes. New York: Wiley.Google Scholar
  23. Engle, R.F., and C.W.J. Granger. 1987. Co-integration and error-correction: Representation, estimation and testing. Econometrica 55: 251–276.CrossRefGoogle Scholar
  24. Ezekiel, M. 1930. Methods of correlation analysis, 2nd ed. New York: Wiley.Google Scholar
  25. Farebrother, R.W. 1999. Fitting linear relationships: A history of the calculus of observations 1750–1900. New York: Springer.CrossRefGoogle Scholar
  26. Fisher, R.A. 1915. Frequency distribution of the values of the correlation coefficient in samples from an indefinitely large population. Biometrika 10: 507–521.Google Scholar
  27. Fisher, R.A. 1921. On the ‘probable error’ of a coefficient deduced from a small sample. Metron 1: 2–32.Google Scholar
  28. Fisher, R.A. 1922a. On the mathematical foundations of theoretical statistics. Philosophical Transactions of the Royal Society A 222: 309–368.CrossRefGoogle Scholar
  29. Fisher, R.A. 1922b. On the interpretation of χ2 from contingency tables, and the calculation of p. Journal of the Royal Statistical Society 85: 87–94.CrossRefGoogle Scholar
  30. Fisher, R.A. 1922c. The goodness of fit of regression formulae and the distribution of regression coefficients. Journal of the Royal Statistical Society 85: 597–612.CrossRefGoogle Scholar
  31. Fisher, R.A. 1924. The conditions under which χ2 measures the discrepancy between observation and hypothesis. Journal of the Royal Statistical Society 87: 442–450.CrossRefGoogle Scholar
  32. Fisher, R.A. 1925. Statistical methods for research workers. Edinburgh: Oliver & Boyd.Google Scholar
  33. Fisher, R.A. 1935a. The logic of inductive inference. Journal of the Royal Statistical Society 98(39–54): 55–82.Google Scholar
  34. Fisher, R.A. 1935b. The design of experiments. Edinburgh: Oliver & Boyd.Google Scholar
  35. Fisher, I. 1947. Response of Irving Fisher. Journal of the American Statistical Association 42: 4–5.CrossRefGoogle Scholar
  36. Fisher, R.A. 1955. Statistical methods and scientific induction. Journal of the Royal Statistical Society. Series B 17: 69–78.Google Scholar
  37. Fisher, R.A. 1956. Statistical methods and scientific inference. Edinburgh: Oliver & Boyd.Google Scholar
  38. Frisch, R. 1933. Editorial. Econometrica 1: 1–4.CrossRefGoogle Scholar
  39. Frisch, R. 1934. Statistical confluence analysis by means of complete regression schemes. Oslo: Universitetets Okonomiske Institutt.Google Scholar
  40. Galton, F. 1869. Hereditary genius: An inquiry into its laws and consequences. London: Macmillan.CrossRefGoogle Scholar
  41. Gauss, C.F. 1809. Theoria motus corporum coelestium in sectionibus conicis solem ambientium. Hamburg: F. Perthes & I.H. Besser.Google Scholar
  42. Glass, D.V. 1973. Numbering the people. Farnborough: Saxton House.Google Scholar
  43. Godambe, V.P., and D.A. Sprott. 1971. Foundations of statistical inference: A symposium. Toronto: Holt, Rinehart and Winston.Google Scholar
  44. Goldberger, A.S. 1964. Econometric theory. New York: Wiley.Google Scholar
  45. Gossett, W.S. 1908. The probable error of the mean. Biometrika 6: 1–25.CrossRefGoogle Scholar
  46. Granger, C.W.J., and P. Newbold. 1974. Spurious regressions in econometrics. Journal of Econometrics 2: 111–120.CrossRefGoogle Scholar
  47. Granger, C.W.J., and P. Newbold. 1986. Forecasting economic time series, 2nd ed. London: Academic Press.Google Scholar
  48. Graunt, J. 1662. Natural and political observations upon the bills of mortality. London: John Martyn. Repr. in Hull (1899).Google Scholar
  49. Greene, W.H. 2003. Econometric analysis, 5th ed. Englewood Cliffs: Prentice-Hall.Google Scholar
  50. Greenwood, M. 1948. Medical statistics from Graunt to Farr. Cambridge: Cambridge University Press.Google Scholar
  51. Haavelmo, T. 1944. The probability approach to econometrics. Econometrica 12(Suppl): 1–115.Google Scholar
  52. Hacking, I. 1965. Logic of statistical inference. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  53. Hacking, I. 1975. The emergence of probability. Cambridge: Cambridge University Press.Google Scholar
  54. Hald, A. 1990. History of probability and statistics and their applications before 1750. New York: Wiley.CrossRefGoogle Scholar
  55. Hald, A. 1998. A history of mathematical statistics from 1750 to 1930. New York: Wiley.Google Scholar
  56. Hald, A. 2007. A history of parametric statistical inference from Bernoulli to Fisher. New York: Springer.Google Scholar
  57. Hansen, L.P. 1982. Large sample properties of generalized method of moments estimators. Econometrica 97: 93–115.CrossRefGoogle Scholar
  58. Harrison, B. 2004. Oxford dictionary of national biography. Oxford: Oxford University Press.Google Scholar
  59. Heckman, J.J. 1992. Haavelmo and the birth of modern econometrics: A review of the history of econometric ideas by Mary Morgan. Journal of Economic Literature 30: 876–886.Google Scholar
  60. Heckman, J.J. 2001. Micro data, heterogeneity, and the evaluation of public policy: Nobel lecture. Journal of Political Economy 109: 673–748.CrossRefGoogle Scholar
  61. Heckman, J.J., and B. Singer. 1984. Econometric duration analysis. Journal of Econometrics 24: 63–132.CrossRefGoogle Scholar
  62. Hendry, D.F. 1977. On the time series approach to econometric model building. In New methods in business cycle research, ed. C.A. Sims. Minnesota: Federal Reserve Bank of Minneapolis.Google Scholar
  63. Hendry, D.F. 1993. Econometrics: Alchemy or science? Oxford: Blackwell.Google Scholar
  64. Hendry, D.F. 1995. Dynamic econometrics. Oxford: Oxford University Press.CrossRefGoogle Scholar
  65. Hendry, D.F., and M.S. Morgan. 1995. The foundations of econometric analysis. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  66. Hilts, V.L. 1973. Statistics and social science. In Foundations of scientific method: The nineteenth century, ed. R.N. Giere and R.S. Westfall. Bloomington: Indiana University Press.Google Scholar
  67. Hilts, V.L. 1978. Aliss exterendum, or, the origins of the Statistical Society of London. Isis 69: 21–43.CrossRefGoogle Scholar
  68. Hoppit, J. 1996. Political arithmetic in eighteenth-century England. Economic History Review 49: 516–540.CrossRefGoogle Scholar
  69. Horowitz, J.L. 1998. Semiparametric methods in econometrics. New York: Springer.CrossRefGoogle Scholar
  70. Hotelling, H. 1930. British statistics and statisticians today. Journal of the American Statistical Association 25: 186–190.CrossRefGoogle Scholar
  71. Hull, H.C. 1899. The economic writings of Sir William Petty. Cambridge: Cambridge University Press.Google Scholar
  72. Hume, D. 1987. In Essays, moral, political and literary, ed. E.F. Miller. Indianapolis: Liberty Fund.Google Scholar
  73. Jevons, W.S. 1871. The theory of political economy. New York: Augustus M. Kelley, 1911.Google Scholar
  74. Johansen, S. 1991. Estimation and hypothesis testing of cointegrating vector of Gaussian vector autoregressive models. Econometrica 59: 1551–1580.CrossRefGoogle Scholar
  75. Johnston, J. 1963. Econometric methods. New York: McGraw-Hill.Google Scholar
  76. JSSL (Journal of the Statistical Society of London). 1834. Prospects of the objects and plan of operation of the statistical society of London. Reprinted in Journal of the Statistical Society of London 1869: 385–387.Google Scholar
  77. Keynes, J.N. 1890/1917. The scope and method of political economy. Fairfield: Augustus M. Kelley.Google Scholar
  78. Keynes, J.M., and J. Tinbergen. 1939–40. Professor’s Tinbergen’s method. Economic Journal 49: 558–568; A Reply, by J. Tinbergen, and Comment by Keynes, 50: 141–156.Google Scholar
  79. Klein, L.R. 1950. Economic fluctuations in the United States 1921–1941, Cowles commission for research in economics, monograph no. 11. New York: Wiley.Google Scholar
  80. Kolmogorov, A.N. 1933. Foundations of the theory of Probability, 2nd ed. New York: Chelsea.Google Scholar
  81. Koopmans, T.C. 1939. Linear regression analysis of economic time series, Netherlands Economic Institute, publication no. 20. Haarlem: F. Bohn.Google Scholar
  82. Koopmans, T.C. 1947. Measurement without theory. Review of Economics and Statistics 29: 161–172.CrossRefGoogle Scholar
  83. Koopmans, T.C. 1950. Statistical inference in dynamic economic models, Cowles commission monograph, no. 10. New York: Wiley.Google Scholar
  84. Kreager, P. 1988. New light on Graunt. Population Studies 42: 129–140.CrossRefGoogle Scholar
  85. Legendre, A.M. 1805. Nouvelles Méthodes pour la détermination des orbites des comètes. Paris: Courcier.Google Scholar
  86. Lehmann, E.L. 1990. Model specification: The views of fisher and Neyman, and later developments. Statistical Science 5: 160–168.CrossRefGoogle Scholar
  87. Lehmann, E.L. 1993. The Fisher and Neyman–Pearson theories of testing hypotheses: One theory or two? Journal of the American Statistical Association 88: 1242–1249.CrossRefGoogle Scholar
  88. Lehmann, E.L. 1999. ‘Student’ and small-sample theory. Statistical Science 14: 418–426.CrossRefGoogle Scholar
  89. Letwin, W. 1965. The origins of scientific economics. New York: Anchor Books.Google Scholar
  90. Lieberman, B. 1971. Contemporary problems in statistics: A book of readings for the behavioral sciences. Oxford: Oxford University Press.Google Scholar
  91. Manski, C.F., and D. MacFadden. 1981. Structural analysis of discrete data with econometric applications. Cambridge, MA: MIT Press.Google Scholar
  92. Mayo, D.G. 1991. Novel evidence and severe tests. Philosophy of Science 58: 523–552.CrossRefGoogle Scholar
  93. Mayo, D.G. 1996. Error and the growth of experimental knowledge. Chicago: University of Chicago Press.CrossRefGoogle Scholar
  94. Mayo, D.G. 2005. Philosophy of statistics. In Philosophy of science: An encyclopedia, ed. S. Sarkar and J. Pfeifer. London: Routledge.Google Scholar
  95. Mayo, D.G., and A. Spanos. 2004. Methodology in practice: Statistical misspecification testing. Philosophy of Science 71: 1007–1025.CrossRefGoogle Scholar
  96. Mayo, D.G., and A. Spanos. 2006. Severe testing as a basic concept in a Neyman–Pearson philosophy of induction. British Journal for the Philosophy of Science 57: 323–357.CrossRefGoogle Scholar
  97. Mills, F.C. 1924. Statistical methods. New York: Henry Holt, 1938.Google Scholar
  98. Moore, H.L. 1908. The statistical complement of pure economics. Quarterly Journal of Economics 23: 1–33.CrossRefGoogle Scholar
  99. Moore, H.L. 1911. The law of wages. New York: Macmillan.Google Scholar
  100. Morgan, M.S. 1990. The history of econometric ideas. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  101. Morrison, D.E., and R.E. Henkel. 1970. The significance test controversy: A reader. Chicago: Aldine.Google Scholar
  102. Neyman, J. 1934. On the two different aspects of the representative method: The method of stratified sampling and the method of purposive selection. Journal of the Royal Statistical Society 97: 558–625.CrossRefGoogle Scholar
  103. Neyman, J. 1935. On the problem of confidence intervals. Annals of Mathematical Statistics 6: 111–116.CrossRefGoogle Scholar
  104. Neyman, J. 1950. First course in probability and statistics. New York: Henry Holt.Google Scholar
  105. Neyman, J. 1952. Lectures and conferences on mathematical statistics and probability, 2nd ed. Washington, DC: U.S. Department of Agriculture.Google Scholar
  106. Neyman, J. 1956. Note on an article by Sir Ronald Fisher. Journal of the Royal Statistical Society. Series B 18: 288–294.Google Scholar
  107. Neyman, J. 1977. Frequentist probability and frequentist statistics. Synthese 36: 97–131.CrossRefGoogle Scholar
  108. Neyman, J., and E.S. Pearson. 1933. On the problem of the most efficient tests of statistical hypotheses. Philosophical Transactions of the Royal Society of London. Series A 231: 289–337.CrossRefGoogle Scholar
  109. Pagan, A.R., and A. Ullah. 1999. Nonparametric econometrics. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  110. Pearson, K. 1896. Mathematical contributions to the theory of evolution. III. Regression, heredity, and panmixia. Philosophical Transactions of the Royal Society of London. Series A 187: 253–318.CrossRefGoogle Scholar
  111. Pearson, K. 1900. On the criterion that a given system of deviations from the probable in the case of a correlated system of variables in such that it can be reasonably supposed to have arisen from random sampling. Philosophical Magazine 50: 157–175.Google Scholar
  112. Pearson, E.S. 1931a. The analysis of variance in cases of non-normal variation. Biometrika 23: 114–133.CrossRefGoogle Scholar
  113. Pearson, E.S. 1931b. Note on tests for normality. Biometrika 22: 423–424.Google Scholar
  114. Pearson, E.S. 1955. Statistical concepts in the relation to reality. Journal of the Royal Statistical Society. Series B 17: 204–207.Google Scholar
  115. Pearson, E.S. 1966. The Neyman–Pearson story: 1926–34. In Research papers in statistics: Festschrift for J. Neyman, ed. F.N. David. New York: Wiley.Google Scholar
  116. Peirce, C.S. 1878. The probability of induction. Popular Science Monthly 12: 705–718.Google Scholar
  117. Persons, W.M. 1925. Statistics and economic theory. Review of Economics and Statistics 7: 179–197.CrossRefGoogle Scholar
  118. Phillips, P.C.B. 1986. Understanding spurious regression in econometrics. Journal of Econometrics 33: 311–340.CrossRefGoogle Scholar
  119. Phillips, P.C.B. 1987. Time series regressions with a unit root. Econometrica 55: 227–301.CrossRefGoogle Scholar
  120. Phillips, P.C.B., and S.N. Durlauf. 1986. Multiple time series regression with integrated processes. Review of Economic Studies 53: 473–495.CrossRefGoogle Scholar
  121. Playfair, W. 1786. The commercial and political atlas. London: T. Burton, 1801.Google Scholar
  122. Porter, T.M. 1986. The rise of statistical thinking 1820–1900. Princeton: Princeton University Press.Google Scholar
  123. Quetelet, A. 1942. A treatise on man and the development of his faculties. Edinburgh: Chambers.Google Scholar
  124. Redman, D.A. 1997. The rise of political economy as a science. Cambridge, MA: MIT Press.Google Scholar
  125. Routh, G. 1975. The origins of economic ideas. London: Macmillan.CrossRefGoogle Scholar
  126. RSS (Royal Statistical Society). 1934. Annals of the royal statistical society 1834–1934. London: The Royal Statistical Society.Google Scholar
  127. Schweber, L. 2006. Disciplining statistics: Demographic and vital statistics in France and England, 1830–1885. Durham: Duke University Press.CrossRefGoogle Scholar
  128. Secrist, H. 1930. An introduction to statistical methods, 2nd ed. New York: Macmillan.Google Scholar
  129. Sims, C.A. 1980. Macroeconomics and reality. Econometrica 48: 1–48.CrossRefGoogle Scholar
  130. Slutsky, E. 1927. The summation of random causes as the source of cyclic processes. In Russian; English trans. in Econometrica 5: 1937.Google Scholar
  131. Smith, A. 1776. In An inquiry into the nature and causes of the wealth of nations, ed. R.H. Campell, A.S. Skinner, and W.B. Todd. Oxford: Clarendon Press.CrossRefGoogle Scholar
  132. Spanos, A. 1986. Statistical foundations of econometric modelling. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  133. Spanos, A. 1989a. On re-reading Haavelmo: A retrospective view of econometric modeling. Econometric Theory 5: 405–429.CrossRefGoogle Scholar
  134. Spanos, A. 1989b. Early empirical findings on the consumption function, stylized facts or fiction: A retrospective view. Oxford Economic Papers 41: 150–169.CrossRefGoogle Scholar
  135. Spanos, A. 1990. The simultaneous equations model revisited: Statistical adequacy and identification. Journal of Econometrics 44: 87–108.CrossRefGoogle Scholar
  136. Spanos, A. 1995. On theory testing in econometrics: Modeling with nonexperimental data. Journal of Econometrics 67: 189–226.CrossRefGoogle Scholar
  137. Spanos, A. 1999. Probability theory and statistical inference: Econometric modeling with observational data. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  138. Spanos, A. 2001. Time series and dynamic models. In A companion to theoretical econometrics, ed. B. Baltagi. Oxford: Blackwell.Google Scholar
  139. Spanos, A. 2005. Misspecification, robustness and the reliability of inference: The simple t-test in the presence of Markov dependence. Working paper, Virginia Polytechnic Institute and State University.Google Scholar
  140. Spanos, A. 2006a. Econometrics in retrospect and prospect. In New Palgrave handbook of econometrics, vol. 1, ed. T.C. Mills and K. Patterson. London: Macmillan.Google Scholar
  141. Spanos, A. 2006b. Revisiting the omitted variables argument: Substantive vs. statistical adequacy. Journal of Economic Methodology 13: 179–218.CrossRefGoogle Scholar
  142. Spanos, A. 2006c. Where do statistical models come from? Revisiting the problem of specification. In Optimality: The second Erich L. Lehmann symposium, Lecture notes-monograph series, vol. 49, ed. J. Rojo. Beachwood: Institute of Mathematical Statistics.Google Scholar
  143. Spanos, A. 2006d. Revisiting the statistical foundations of panel data models. Working paper, Virginia Polytechnic Institute and State University.Google Scholar
  144. Spanos, A. 2008. Curve-fitting, the reliability of inductive inference and the error-statistical approach. Philosophy of Science 74: 1046.CrossRefGoogle Scholar
  145. Spanos, A., and A. McGuirk. 2001. The model specification problem from a probabilistic reduction perspective. Journal of the American Agricultural Association 83: 1168–1176.CrossRefGoogle Scholar
  146. Stigler, G.J. 1954. The early history of the empirical studies of consumer behavior. Journal of Political Economy 62: 95–113.CrossRefGoogle Scholar
  147. Stigler, S.M. 1986. The history of statistics: The measurement of uncertainty before 1900. Cambridge, MA: Harvard University Press.Google Scholar
  148. Stone, J.R.N. 1954. The measurement of consumers’ expenditure and behaviour in the United Kingdom, 1920–1938. Cambridge: Cambridge University Press.Google Scholar
  149. Stone, R. 1997. Some british empiricists in the social sciences 1650–1900. Cambridge: Cambridge University Press.Google Scholar
  150. Tinbergen, J. 1939. Statistical testing of business cycle research, vol. 2. Geneva: League of Nations.Google Scholar
  151. Tippet, L.H.C. 1931. The methods of statistics. London: Williams & Norgate.Google Scholar
  152. Uspensky, J.V. 1937. Introduction to mathematical probability. New York: McGraw-Hill.Google Scholar
  153. Walker, H.M. 1929. Studies in the history of statistical method. Baltimore: Williams & Wilkins.Google Scholar
  154. Walker, H.M. 1958. The contributions of Karl Pearson. Journal of the American Statistical Association 53: 11–22.CrossRefGoogle Scholar
  155. Wold, H.O. 1938. A study in the analysis of stationary time series. Uppsala: Almquist & Wicksell.Google Scholar
  156. Yule, G.U. 1897. On the theory of correlation. Journal of the Royal Statistical Society 60: 812–854.CrossRefGoogle Scholar
  157. Yule, G.U. 1911. An introduction to the theory of statistics. London: Griffin & Co.CrossRefGoogle Scholar
  158. Yule, G.U. 1926. Why do we sometimes get nonsense correlations between time series? – A study in sampling and the nature of time series. Journal of the Royal Statistical Society 89: 1–64.CrossRefGoogle Scholar
  159. Yule, G.U. 1927. On a method of investigating periodicities in disturbed series, with special reference to Wolfer’s sunspot numbers. Philosophical Transactions of the Royal Society of London. Series A 226: 267–298.CrossRefGoogle Scholar

Copyright information

© Macmillan Publishers Ltd. 2018

Authors and Affiliations

  • Aris Spanos
    • 1
  1. 1.