The New Palgrave Dictionary of Economics

2018 Edition
| Editors: Macmillan Publishers Ltd

Shrinkage-Biased Estimation in Econometrics

  • George G. Judge
Reference work entry


The maximum likelihood estimation principle, unbiasedness and hypothesis testing serve as foundation stones for much that goes on in the lives of theoretical and applied econometricians. In this context, the purpose of these words and other symbols is to review the statistical implications of pursuing these estimation and inference goals and to suggest superior alternatives.


Estimation Gauss–Markov theorem Inference James and Stein estimator Least squares Linear models Maximum likelihood estimator Maximum likelihood Multivariate estimation Pretest estimation Semiparametric estimation Shrinkage-biased estimation in econometrics Stein rule estimator Testing in econometrics 

JEL Classifications

C10 C2 
This is a preview of subscription content, log in to check access.


  1. Baranchik, A. 1964. Multiple regression and estimation of the mean of multivariate normal distribution, Technical report 51. Stanford: Stanford University, Department of Statistics.Google Scholar
  2. Bock, M., T. Yancey, and G. Judge. 1973. The statistical consequences of preliminary test estimators in regression. Journal of American Statistical Association 68: 107–110.CrossRefGoogle Scholar
  3. Efron, B., and C. Morris. 1973. Combining possibly related estimation problems. Journal of the Royal Statistical Society, Series B 35: 379–421.Google Scholar
  4. Green, E., and W. Strawderman. 1991. James-Stein-type estimator for combining unbiased and possibly biased estimators. Journal of the American Statistical Associations 86: 1001–1006.CrossRefGoogle Scholar
  5. James, W., and C. Stein. 1961. Estimation with quadratic loss. In Proceedings of the fourth Berkley symposium on mathematical statistics and probability, vol. 1. Berkeley/Los Angeles: University of California Press.Google Scholar
  6. Judge, G., and M. Bock. 1978. The statistical implications of pretest and Stein-Rule estimators in econometrics. New York: North-Holland.Google Scholar
  7. Judge, G., and M. Bock. 1983. Biased estimation. In Handbook of econometrics, vol. 1, ed. Z. Griliches and M. Intriligator. Amsterdam: North-Holland.Google Scholar
  8. Judge, G., and R. Mittelhammer. 2004. A semiparametric basis for combining estimation problems under quadratic loss. Journal of American Statistical Association 49: 479–487.CrossRefGoogle Scholar
  9. Judge, G., R. Hill, W. Griffiths, H. Lutkepohl and T. Lee. 1988. Introduction to the theory and practice of econometrics, ch. 20. New York: Wiley.Google Scholar
  10. Lindley, D. 1962. Discussion of professor Stein’s paper. Journal of the Royal Statistical Society, Series B 24: 285–288.Google Scholar
  11. Mittelhammer, R., G. Judge, D. Miller, and S. Cardell. 2005. Minimum divergence moment based binary response models: Estimation and inference, Working paper No. 998. Berkeley: CUDARE, University of California, Berkeley.Google Scholar
  12. Sclove, S., C. Morris, and R. Radhakrishman. 1972. Non-optimality of preliminary-test estimators for the multinormal mean. Annals of Mathematical Statistics 43: 1481–1490.CrossRefGoogle Scholar
  13. Stein, C. 1955. Inadmissibility of the usual estimator for the mean of a multivariate normal distribution. In Proceedings of the third Berkeley symposium on mathematical statistics and probability, vol. 1. Berkeley/Los Angeles: University of California Press.Google Scholar

Copyright information

© Macmillan Publishers Ltd. 2018

Authors and Affiliations

  • George G. Judge
    • 1
  1. 1.