The New Palgrave Dictionary of Economics

2018 Edition
| Editors: Macmillan Publishers Ltd

Uncertainty and General Equilibrium

  • Mukul Majumdar
  • Roy Radner
Reference work entry
DOI: https://doi.org/10.1057/978-1-349-95189-5_1630

Abstract

This article reviews alternative approaches to incorporating uncertainty in Walrasian models. It begins with a sketch of the Arrow–Debreu model of complete markets. An extension of this framework allowing for economic agents to have different information about the environment is followed by a critique. When markets are incomplete and trades take place sequentially, several types of equilibrium concept arise according to the hypotheses we make about the way traders form their expectations. We present conditions for the existence of equilibria for two such equilibrium concepts, and discuss the possible failure to attain Paretian welfare optima.

Keywords

Arrow–Debreu model Bounded rationality Budget constraints Competitive equilibrium Conditional probability Consumption possibility set Equilibrium Existence of competitive equilibrium Expectation formation Expected utility hypothesis General equilibrium Incomplete information Incomplete markets Indicative planning Inside information Limited liability Moral hazard Nonprice information Optimality of competitive equilibrium Pareto efficiency Perfect foresight Production possibility set Pseudo-equilibrium Rational expectations Rational expectations equilibrium Risk Sequential trading Steady state Temporary (or momentary) equilibrium Uncertainty Walras’s law 

JEL Classifications

D58 
This is a preview of subscription content, log in to check access.

Bibliography

  1. Allen, B. 1981. Generic existence of completely revealing equilibria for economies with uncertainty when prices convey information. Econometrica 49: 1173–1199.CrossRefGoogle Scholar
  2. Allen, B. 1986. General equilibrium with rational expectations. In Contributions to mathematical economics: Essays in honor of Gerard Debreu, ed. A. Mas-Colell and W. Hildenbrand. Amsterdam: North-Holland.Google Scholar
  3. Arrow, K.J. 1953. Le rôle de valeurs boursières pour la repartition la meilleure des risques. Econometrie 11, 41–8. Trans. as ‘The role of securities in the optimal allocation of risk-bearing’, Review of Economic Studies 31 (1964): 91–6.Google Scholar
  4. Arrow, K.J. 1965. Aspects of the theory of risk-bearing. Yijo Johansson Foundation: Helsinki.Google Scholar
  5. Arrow, K.J., and F.H. Hahn. 1971. General competitive analysis. San Francisco: Holden-Day.Google Scholar
  6. Balasko, Y., and D. Cass. 1989. The structure of financial equilibrium I: Exogenous yields and unrestricted participation. Econometrica 57: 135–162.CrossRefGoogle Scholar
  7. Bhattacharya, R., and M.K. Majumdar. 2007. Random dynamical systems: Theory and applications. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  8. Blume, L.E., and D. Easley. 1982. Learning to be rational. Journal of Economic Theory 26: 318–339.CrossRefGoogle Scholar
  9. Blume, L.E., and D. Easley. 1998. Rational expectations and rational learning. In Organizations with incomplete information, ed. M. Majumdar. Cambridge: Cambridge University Press.Google Scholar
  10. Bray, M. 1982. Learning, estimation and the stability of rational expectations. Journal of Economic Theory 26: 318–339.CrossRefGoogle Scholar
  11. Burke, J. 1986. Existence of equilibrium for incomplete market economies with production and stock trading. Unpublished manuscript. Texas A&M University.Google Scholar
  12. Cass, D. 2006. Competitive equilibrium with incomplete financial markets. Journal of Mathematical Economics 42: 384–405.CrossRefGoogle Scholar
  13. Debreu, G. 1953. Une économie de l’incertain. Mimeo, Electricité de France, Paris. Trans. as ‘Economics under Uncertainty’, in G. Debreu, Mathematical Economics, Twenty Papers of Gerard Debreu. Cambridge: Cambridge University Press, 1983.Google Scholar
  14. Debreu, G. 1959. Theory of value. New York: Wiley.Google Scholar
  15. Debreu, G. 1962. New concepts and techniques for equilibrium analysis. International Economic Review 3: 257–273.CrossRefGoogle Scholar
  16. Debreu, G. 1970. Economies with a finite set of equilibria. Econometrica 38: 387–392.CrossRefGoogle Scholar
  17. Duffie, D. 1988. Security markets: Stochastic models. Boston: Academic Press.Google Scholar
  18. Duffie, D., and W. Shafer. 1985. Equilibrium in incomplete markets I: A basic model of generic existence. Journal of Mathematical Economics 14: 285–300.CrossRefGoogle Scholar
  19. Duffie, D., and W. Shafer. 1987. Equilibrium in incomplete markets II: Generic existence in stochastic economies. Journal of Mathematical Economics 15: 199–216.CrossRefGoogle Scholar
  20. Futia, C.A. 1979. Stochastic business cycles. Unpublished manuscript. Murray Hill: AT&T Bell Laboratories.Google Scholar
  21. Futia, C.A. 1981. Rational expectations in stationary linear models. Econometrica 49: 171–192.CrossRefGoogle Scholar
  22. Geanakopolos, J. 1990. An introduction to general equilibrium with incomplete asset markets. Journal of Mathematical Economics 19: 1–38.CrossRefGoogle Scholar
  23. Geanakoplos, J., and A. Mas-Colell. 1989. Real indeterminacy with financial assets. Journal of Economic Theory 47: 22–38.CrossRefGoogle Scholar
  24. Geanakoplos, J., and H. Polemarchakis. 1986. Existence, regularity, and constrained suboptimality of competitive allocations when the asset market is incomplete. In Uncertainty, information and communication: Essays in honor of Kenneth Arrow, ed. W.P. Heller, R.M. Starr, and D.A. Starrett, vol. 3. Cambridge: Cambridge University Press.Google Scholar
  25. Grandmont, J.-M. 1987. Temporary equilibrium. In The new palgrave, ed. J. Eatwell, M. Milgate, and P. Newman, vol. 4. London: Macmillan.Google Scholar
  26. Green, J. 1973. Information, inefficiency, and equilibrium. Discussion Paper No. 284, Harvard Institute of Economic Research.Google Scholar
  27. Green, J. 1977. The nonexistence of informational equilibria. Review of Economic Studies 44: 451–463.CrossRefGoogle Scholar
  28. Harrison, J.M., and D.M. Kreps. 1979. Martingales and arbitrage in multiperiod securities markets. Journal of Economic Theory 20: 381–408.CrossRefGoogle Scholar
  29. Hart, O. 1975. On the optimality of equilibrium when the market structure is incomplete. Journal of Economic Theory 11: 418–443.CrossRefGoogle Scholar
  30. Jordan, J.S., and R. Radner. 1982. Rational expectations in microeconomic models: An overview. Journal of Economic Theory 26: 201–223.CrossRefGoogle Scholar
  31. Kreps, D.M. 1977. A note on ‘fulfilled expectations’ equilibria. Journal of Economic Theory 14: 32–43.CrossRefGoogle Scholar
  32. Kreps, D.M. 1982. Multi-period securities and the efficient allocation of risk: A comment on the Black–Scholes option pricing model. In The economics of uncertainty and information, ed. J. McCall. Chicago: University of Chicago Press.Google Scholar
  33. LeRoy, S.E., and J. Werner. 2001. Principles of financial economics. Cambridge: Cambridge University Press.Google Scholar
  34. Lucas, R.E. 1972. Expectations and the neutrality of money. Journal of Economic Theory 4: 103–124.CrossRefGoogle Scholar
  35. Magill, M., and M. Quinzii. 1996. Theory of incomplete markets. Cambridge, MA: MIT Press.Google Scholar
  36. Magill, M., and W. Shafer. 1990. Characterization of generically complete real asset structures. Journal of Mathematical Economics 19: 167–194.CrossRefGoogle Scholar
  37. Magill, M., and W. Shafer. 1991. Incomplete markets. In Handbook of mathematical economics, ed. W. Hildenbrand and H. Sonnenschein, vol. 4. New York: Elsevier.Google Scholar
  38. Radner, R. 1967. Equilibrie des marchés à terme et au comptant en cas d’incertitude. Cahiers d’Econometrie 4, 35–52. Paris: CNRS.Google Scholar
  39. Radner, R. 1968. Competitive equilibrium under uncertainty. Econometrica 36: 31–58.CrossRefGoogle Scholar
  40. Radner, R. 1972. Existence of equilibrium of plans, prices, and price expectations in a sequence of markets. Econometrica 40: 289–304.CrossRefGoogle Scholar
  41. Radner, R. 1979. Rational expectations equilibrium: Generic existence and the information revealed by prices. Econometrica 47: 655–657.CrossRefGoogle Scholar
  42. Radner, R. 1982. Equilibrium under uncertainty. In Handbook of mathematical economics, ed. K.J. Arrow and M.D. Intriligator, vol. 2. Amsterdam: North-Holland.Google Scholar
  43. Radner, R., and J.E. Stiglitz. 1984. A nonconcavity in the value of information. In Bayesian models of economic theory, ed. M. Boyer and R.E. Kihlstrom. Amsterdam: North-Holland.Google Scholar
  44. Savage, L.J. 1954. The foundations of statistics. New York: Wiley.Google Scholar
  45. Shafer, W. 1998. Equilibrium with incomplete markets in a sequence economy. In Organizations with incomplete information, ed. M. Majumdar. Cambridge: Cambridge University Press.Google Scholar
  46. Werner, J. 1985. Equilibrium in economies with incomplete financial markets. Journal of Economic Theory 36: 110–119.CrossRefGoogle Scholar
  47. Younes, Y. 1985. Competitive equilibrium and incomplete market structures. Unpublished manuscript. Department of Economics, University of Pennsylvania (revised October 1986).Google Scholar

Copyright information

© Macmillan Publishers Ltd. 2018

Authors and Affiliations

  • Mukul Majumdar
    • 1
  • Roy Radner
    • 1
  1. 1.