The New Palgrave Dictionary of Economics

2018 Edition
| Editors: Macmillan Publishers Ltd

Non-Parametric Statistical Methods

  • Joseph L. Gastwirth
Reference work entry


Basic statistics and econometrics courses stress methods based on assuming that the data or error term in regression models follow the normal distribution. Indeed, the efficiency of least squares estimates relies on the assumption of normality. In order to lessen the dependence of statistical inference on that assumption statisticians developed methods based on rank tests whose sampling distribution, under the null hypothesis, do not depend on the form of the underlying density function.

This is a preview of subscription content, log in to check access.


  1. Arbuthnott, J. 1710. An argument for divine providence taken from the constant regularity observed in the birth of both sexes. Philosophical Transactions 27: 186–190.CrossRefGoogle Scholar
  2. Bauer, D.F. 1972. Constructing confidence sets using rank statistics. Journal of the American Statistical Association 67: 687–690.CrossRefGoogle Scholar
  3. Bickel, P.J. 1973. On some analogs to linear combination of order statistics in the linear model. Annals of Statistics 1: 597–616.CrossRefGoogle Scholar
  4. Birnbaum, A., and E. Laska. 1967. Efficiency robust two-sample rank tests. Journal of the American Statistical Association 62: 1241–1251.CrossRefGoogle Scholar
  5. Brown, G.W. and A.M. Mood. 1951. On median tests for linear hypotheses. Proceedings of the 2nd Berkeley Symposium, 159–166.Google Scholar
  6. Chernoff, H., and I.R. Savage. 1958. Asymptotic normality and efficiency of certain nonparametric test statistics. Annals of Mathematical Statistics 29: 972–994.CrossRefGoogle Scholar
  7. van Elteren, P. 1960. On the combination of independent two sample tests of Wilcoxon. Bulletin de l’Institut Internationale de Statistique 37(3): 351–360.Google Scholar
  8. Friedman, M. 1937. The use of ranks to avoid the assumption of normality implicit in the analysis of variance. Journal of the American Statistical Association 32: 675–701.CrossRefGoogle Scholar
  9. Gastwirth, J.L. 1966. On robust procedures. Journal of the American Statistical Association 61: 929–948.CrossRefGoogle Scholar
  10. Gastwirth, J.L., and H. Rubin. 1971. The behavior of the level of rank tests on dependent data. Journal of the American Statistical Association 66: 816–820.CrossRefGoogle Scholar
  11. Hajek, J., and Z. Sidak. 1967. Theory of rank tests. New York: Academic Press.Google Scholar
  12. Hettmansperger, T.P. 1984. Statistical inference based on ranks. New York: Wiley.Google Scholar
  13. Hodges Jr., J.L., and E.L. Lehmann. 1963. Estimates of location based on rank tests. Annals of Mathematical Statistics 34: 598–611.CrossRefGoogle Scholar
  14. Hogg, R.V. 1974. Adaptive robust procedures: A partial review and some suggestions for future research. Journal of the American Statistical Association 69: 909–927.CrossRefGoogle Scholar
  15. Hollander, M., and D.A. Wolfe. 1973. Nonparametric statistical methods. New York: Wiley.Google Scholar
  16. Huber, P.J. 1972. Robust statistics: A review. Annals of Mathematical Statistics 43: 1041–1067.CrossRefGoogle Scholar
  17. Jureckova, J. 1969. Asymptotic linearity of a rank statistic in regression parameter. Annals of Mathematical Statistics 40: 1889–1950.CrossRefGoogle Scholar
  18. Jureckova, J. 1971. Nonparametric estimate of regression coefficients. Annals of Mathematical Statistics 42: 1328–1338.CrossRefGoogle Scholar
  19. Kruskal, W.H., and W.A. Wallis. 1952. Use of ranks in one criterion variance analysis. Journal of the American Statistical Association 57: 583–621.CrossRefGoogle Scholar
  20. Lehmann, E.L. 1975. Nonparametrics: Statistical methods based on ranks. San Francisco: Holden-Day.Google Scholar
  21. Mann, H.B., and D.R. Whitney. 1947. On a test of whether one of two random variables is stochastically larger than the other. Annals of Mathematical Statistics 18: 50–60.CrossRefGoogle Scholar
  22. Oosterhoff, J. 1969. Combination of one-sided statistical tests. Amsterdam: Mathematical Centre.Google Scholar
  23. Puri, M.L. 1965. On the combination of independent two sample tests of a general class. Review of the ISI 33: 229–241.Google Scholar
  24. Sen, P.K. 1968. Estimates of the regression coefficient based on Kendall’s tau. Journal of the American Statistical Association 63: 1379–1389.CrossRefGoogle Scholar
  25. Theil, H. 1950. A rank invariant method of linear and polynomial regression analysis. Proceedings: Koninklijke Nederlandse Akademie van Wetenschappen, Series A 53: 386–392.Google Scholar
  26. Wilcoxon, F. 1945. Individual comparison by ranking methods. Biometrics 1: 80–83.CrossRefGoogle Scholar
  27. Wolff, S.S., Rubin, H., and J.L. Gastwirth. 1967. The effect of autoregression dependence on a nonparametric test. Professional Group on Information Theory IEEE, IT–13: 311–313.Google Scholar

Copyright information

© Macmillan Publishers Ltd. 2018

Authors and Affiliations

  • Joseph L. Gastwirth
    • 1
  1. 1.