The New Palgrave Dictionary of Economics

2018 Edition
| Editors: Macmillan Publishers Ltd

Specification Problems in Econometrics

  • Edward E. Leamer
Reference work entry
DOI: https://doi.org/10.1057/978-1-349-95189-5_1287

Abstract

The theory of econometrics presumes a ‘specification’ that selects a sharp borderline between (a) assumptions that are maintained and (b) questions that the data are allowed to address. For example, one might treat the list of variables in a regression model as known with certainty but the ‘coefficients’ of these variables as uncertain. In practice, a wide and fuzzy border between the maintained assumptions and the uncertain assumptions causes great ambiguity in the inferences economists draw from their non-experimental data.

Keywords

Bayesian inference Criticism Data-instigated models Durbin–Watson statistic Econometrics Frequentist econometrics Goodness of fit Linear regression Robustness Sensitivity analysis Simplification Specification Statistical estimation Statistical inference Subjective probability 

JEL Classifications

C1 
This is a preview of subscription content, log in to check access.

Bibliography

  1. Box, G.E.P. 1980. Sampling and Bayes’ inference in scientific modelling and robustness. Journal of the Royal Statistical Society 143: 383–430.CrossRefGoogle Scholar
  2. Judge, G.G., and M.E. Bock. 1983. Biased estimation. In Handbook of econometrics, ed. Z. Griliches and M. Intriligator, vol. 1. Amsterdam: North-Holland.Google Scholar
  3. Krasker, W.S., E. Kuh, and R.E. Welsch. 1983. Estimation for dirty data and flawed models. In Handbook of econometrics, ed. Z. Griliches and M. Intriligator, vol. 1. Amsterdam: North-Holland.Google Scholar
  4. Leamer, E.E. 1978. Specification searches. New York: Wiley.Google Scholar
  5. Leamer, E.E. 1982. Sets of posterior means with bounded variance priors. Econometrica 50: 725–736.CrossRefGoogle Scholar
  6. Leamer, E.E. 1983a. Let’s take the con out of econometrics. American Economic Review 73: 31–43.Google Scholar
  7. Leamer, E.E. 1983b. Model choice and specification analysis. In Handbook of econometrics, ed. Z. Griliches and M. Intriligator, vol. 1. Amsterdam: North-Holland.Google Scholar
  8. Ramsey, J.B. 1969. Tests for specification errors in classical linear least squares regression analysis. Journal of the Royal Statistical Society 32: 350–371.Google Scholar
  9. Theil, H. 1957. Specification errors and the estimation of economic relationships. Review of the International Statistical Institute 25: 41–51.CrossRefGoogle Scholar

Copyright information

© Macmillan Publishers Ltd. 2018

Authors and Affiliations

  • Edward E. Leamer
    • 1
  1. 1.