The New Palgrave Dictionary of Economics

2018 Edition
| Editors: Macmillan Publishers Ltd

Measurement, Theory of

  • R. Duncan Luce
  • Louis Narens
Reference work entry
DOI: https://doi.org/10.1057/978-1-349-95189-5_1220

Abstract

Physical measurement, as embodied in dimensional analysis, consists of interlocked, qualitative, ordered structures. Analogous approaches to behavioural science are outlined for sensory scaling such as loudness, utility of uncertain alternatives, and qualitative foundations of probability. In many cases, they are an ordered structure with a binary operation for combining elements and a Cartesian product where each factor affects the ordering of the attribute. Axioms sufficient for measurement – for the existence of a homomorphism onto the positive real numbers – are mentioned, and their uniqueness (scale type – for example, ratio, interval, ordinal) is formulated qualitatively in terms of the structure’s symmetries (or automorphisms).

Keywords

Additivity Allais Paradox Averaging Completeness Conditional probability De Finetti, B. Extended sure-thing principle Independence Invariance Kolmogorov, A. N. Mass measurement Measurement, theory of Monotonicity Preference reversals Probability Ratio scale Representation Scale of measurement Subjective expected utility Subjective probability Transitivity Unboundedness Unconditional probability 

JEL Classifications

C0 
This is a preview of subscription content, log in to check access.

Bibliography

  1. Aczél, J. 1966. Lectures on functional equations and their applications. New York/London: Academic Press.Google Scholar
  2. Aczél, J. 1987. A short course on functional equations: Based upon recent applications to the social and behavioral sciences. Dordrecht: Reidel.CrossRefGoogle Scholar
  3. Alimov, N.G. 1950. On ordered semigroups. Izvestia Akademii Nauk SSSR, Serija Mat. 14: 569–576.Google Scholar
  4. Allais, M., and O. Hagen. 1979. Expected utility hypotheses and the allais paradox. Dordrecht: Reidel.CrossRefGoogle Scholar
  5. Alper, T.M. 1987. A classification of all order-preserving homeomorphism groups that satisfy uniqueness. Journal of Mathematical Psychology 31: 135–154.CrossRefGoogle Scholar
  6. Anderson, N.H. 1981. Foundations of information integration theory. New York: Academic.Google Scholar
  7. Barberà, S., P. Hammond and C. Seidl 1998, 2004. Handbook of utility theory, vol. I: Principles; vol. II: Extensions. Boston: Kluwer.Google Scholar
  8. Bell, D. 1982. Regret in decision making under uncertainty. Operations Research 30: 961–981.CrossRefGoogle Scholar
  9. Birnbaum, M.H. 2007. Tests of branch splitting and branch-splitting independence in Allais paradoxes with positive and mixed consequences. Organizational Behavior and Human Decision Processes 102: 154–173.CrossRefGoogle Scholar
  10. Choquet, G. 1953. Theory of capacities. Annals Institut Fourier 5: 131–295.CrossRefGoogle Scholar
  11. Cohen, M., and L. Narens. 1979. Fundamental unit structures: A theory of ratio scalability. Journal of Mathematical Psychology 20: 193–232.CrossRefGoogle Scholar
  12. Ellermeier, W., and G. Faulhammer. 2000. Empirical evaluation of axioms fundamental to Stevens’s ratio-scaling approach: I. Loudness production. Perception and Psychophysics 62: 1505–1511.CrossRefGoogle Scholar
  13. Fine, T. 1973. Theories of probability. New York: Academic.Google Scholar
  14. Fishbum, P.C. 1985. Nontransitive preference theory and the preference reversal phenomenon. International Review of Economics and Business 32: 39–50.Google Scholar
  15. Fishburn, P.C. 1970. Utility theory for decision making. New York: Wiley.CrossRefGoogle Scholar
  16. Fishburn, P.C. 1982. Nontransitive measurable utility. Journal of Mathematical Psychology 26: 31–67.CrossRefGoogle Scholar
  17. Grether, D.M., and C.R. Plott. 1979. Economic theory of choice and the preference reversal phenomenon. American Economic Review 69: 623–638.Google Scholar
  18. Kahneman, D., and A. Tversky. 1979. Prospect theory: An analysis of decision under risk. Econometrica 47: 263–291.CrossRefGoogle Scholar
  19. Kolmogorov, A. 1933. Grundbegriffe der Wahrscheinlichkeitsrechnung, 1946. New York: Chelsea.CrossRefGoogle Scholar
  20. Luce, R.D. 2000. Utility of gains and losses: Measurement-theoretical and experimental approaches. Mahwah: Erlbaum. Errata: see Luce’s web page at http://www.socsci.uci.edu.
  21. Luce, R.D. 2002. A psychophysical theory of intensity proportions, joint presentations, and matches. Psychological Review 109: 520–532.CrossRefGoogle Scholar
  22. Luce, R.D. 2004. Symmetric and asymmetric matching of joint presentations. Psychological Review 111: 446–454.CrossRefGoogle Scholar
  23. Luce, R.D., and A.A.J. Marley. 2000. On elements of chance. Theory and Decision 49: 97–126.CrossRefGoogle Scholar
  24. Luce, R.D., and L. Narens. 1985. Classification of concatenation measurement structures according to scale type. Journal of Mathematical Psychology 29: 1–72.CrossRefGoogle Scholar
  25. Luce, R.D., and R. Steingrimsson. 2006. Global psychophysical judgments of intensity: Summary of a theory and experiments. In Measurement and representations of sensations, ed. H. Colonious and E. Dzharfov. Mahwah: Lawrence Erlbaum Associates.Google Scholar
  26. Luce, R.D., D.H. Krantz, P. Suppes and A. Tversky 1990. Foundations of measurement, vol. 3. New York: Academic. Repr. New York: Dover, 2007.Google Scholar
  27. Luce, R.D., C.T. Ng, J. Aczél, and A.A.J. Marley. 2008a. Utility of gambling I: Entropy-modified linear weighted utility. Economic Theory 36: 1–33.CrossRefGoogle Scholar
  28. Luce, R.D., C.T. Ng, J. Aczél, and A.A.J. Marley. 2008b. Utility of gambling II: Risk, paradoxes, data. Economic Theory 36: 165–187.CrossRefGoogle Scholar
  29. MacCrimmon, K.R. 1967. Descriptive and normative implications of the decision theory postulates. In Risk and uncertainty, ed. K. Borch and J. Mossin. New York: Macmillan.Google Scholar
  30. Marley, A.A.J., and R.D. Luce. 2005. Independence properties vis-à-vis several utility representations. Theory and Decision 58: 77–143.CrossRefGoogle Scholar
  31. Meginniss, J.R. 1976. A new class of symmetric utility rules for gambles, subjective marginal probability functions, and a generalized Bayes’ rule. Proceedings of the American statistical association, business and economic statistics section, 471–6.Google Scholar
  32. Michell, J. 1990. An introduction to the logic of psychological measurement. Hillsdale: Lawrence Erlbaum Associates.Google Scholar
  33. Michell, J. 1999. Measurement in psychology: Critical history of a methodological concept. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  34. Myung, J.I., G. Karabatsos, and G.J. Iverson. 2005. A Bayesian approach to testing decision making axioms. Journal of Mathematical Psychology 49: 205–225.CrossRefGoogle Scholar
  35. Narens, L. 1981a. A general theory of ratio scalability with remarks about the measurement-theoretic concept of meaningfulness. Theory and Decision 13: 1–70.CrossRefGoogle Scholar
  36. Narens, L. 1981b. On the scales of measurement. Journal of Mathematical Psychology 24: 249–275.CrossRefGoogle Scholar
  37. Narens, L. 1985. Abstract measurement theory. Cambridge, MA: MIT Press.Google Scholar
  38. Narens, L. 1996. A theory of ratio magnitude estimation. Journal of Mathematical Psychology 40: 109–129.CrossRefGoogle Scholar
  39. Narens, L. 2002. Theories of meaningfulness. Mahwah: Lawrence Erlbaum Associates.Google Scholar
  40. Narens, L. 2007. Introduction to the theories of measurement and meaningfulness and the use of invariance in science. Mahwah: Lawrence Erlbaum Associates.Google Scholar
  41. Narens, L. 2008. Theories of probability: An examination of logical and qualitative foundations. London: World Scientific.Google Scholar
  42. Pfanzagl, J. 1968. Theory of measurement. New York: Wiley. 2nd edn, Vienna: Physica, 1971.Google Scholar
  43. Quiggin, J. 1993. Generalized expected utility theory: The rank-dependent model. Boston: Kluwer.CrossRefGoogle Scholar
  44. Roberts, F.S. 1979. Measurement theory. Reading: Addison-Wesley.Google Scholar
  45. Roberts, F.S., and R.D. Luce. 1968. Axiomatic thermodynamics and extensive measurement. Synthese 18: 311–326.CrossRefGoogle Scholar
  46. Savage, L.J. 1954. The foundations of probability. New York: Wiley.Google Scholar
  47. Steingrimsson, R., and R.D. Luce. 2005a. Evaluating a model of global psychophysical judgments I: Behavioral properties of summations and productions. Journal of Mathematical Psychology 49: 290–306.CrossRefGoogle Scholar
  48. Steingrimsson, R., and R.D. Luce. 2005b. Evaluating a model of global psychophysical judgments II: Behavioral properties linking summations and productions. Journal of Mathematical Psychology 49: 308–319.CrossRefGoogle Scholar
  49. Steingrimsson, R., and R.D. Luce. 2006. Empirical Evaluation of a model of global psychophysical judgments III: A form for the psychophysical and perceptual filtering. Journal of Mathematical Psychology 50: 15–29.CrossRefGoogle Scholar
  50. Steingrimsson, R., and R.D. Luce. 2007. Empirical Evaluation of a model of global psychophysical judgments IV: Forms for the weighting function. Journal of Mathematical Psychology 51: 29–44.CrossRefGoogle Scholar
  51. Stevens, S.S. 1946. On the theory of scales of measurement. Science 103: 677–680.CrossRefGoogle Scholar
  52. Suppes, P. 2002. Representation and invariance of scientific structures. Stanford: CSLI publications.Google Scholar
  53. Suppes, P., Krantz, D.H., Luce, R.D. and Tversky, A. 1989. Foundations of measurement, vol. 2. New York: Academic. Repr. New York: Dover, 2007.Google Scholar
  54. Tversky, A., and D. Kahneman. 1992. Advances in prospect theory: Cumulative representation of uncertainty. Journal of Risk and Uncertainty 5: 297–323.CrossRefGoogle Scholar
  55. von Neumann, J. 1995. Mathematical foundations of quantum mechanics. Princeton: Princeton University Press.Google Scholar
  56. Zimmer, K. 2005. Examining the validity of numerical ratios in loudness fractionation. Perception & Psychophysics 67: 569–579.CrossRefGoogle Scholar
  57. Krantz, D.H., R.D. Luce, P. Suppes and A. Tversky 1971. Foundations of measurement, vol. 1. New York: Academic. Repr. New York: Dover, 2007.Google Scholar

Copyright information

© Macmillan Publishers Ltd. 2018

Authors and Affiliations

  • R. Duncan Luce
    • 1
  • Louis Narens
    • 1
  1. 1.