The New Palgrave Dictionary of Economics

2018 Edition
| Editors: Macmillan Publishers Ltd

Lagrange Multipliers

  • S. N. Afriat
Reference work entry


Lagrange’s ‘method of undetermined multipliers’ applies to a function of several variables subject to constraints, for which a maximum is required. Lagrange’s procedure avoids the arbitrary distinction between independent and dependent variables. The method involves further variables, the ‘multipliers’ associated with the constraints, which have importance in application to economic problems. Beside the value obtainable from a given resource, one might also wish to know the ‘marginal value’ obtainable when a unit of it is added. The Lagrangian method is therefore a natural tool of the ‘marginalist revolution’, and the multiplier concept underlies ‘shadow price’, ‘implicit value’ and similar expressions.


Chain rule Convex programming Implicit function theorem Kuhn–Tucker conditions Lagange multipliers Lagrangian function Marginal revolution Separating hyperplane theorem 

JEL Classifications

This is a preview of subscription content, log in to check access.


  1. Afriat, S.N. 1969. The output limit function in general and convex programming and the theory of production. In 36th National Meeting of the Operations Research Society of America, Miami Beach, Florida, November 1969. Reprinted, Econometrica 39(1971): 309–339.Google Scholar
  2. Afriat, S.N. 1970. The progressive support method for convex programming. 7th Mathematical Programming Symposium, The Hague, 1970. Journal of Numerical Analysis 7 (3): 44–57.CrossRefGoogle Scholar
  3. Afriat, S.N. 1971. Theory of maxima and the method of Lagrange. SIAM Journal of Applied Mathematics 20: 343–357.CrossRefGoogle Scholar
  4. Afriat, S.N. 1986. Logic of choice and economic theory, Part V: Optimal programming. Oxford: Clarendon Press.Google Scholar
  5. Dantzig, G. 1963. Linear programming and extensions. Princeton: Princeton University Press.CrossRefGoogle Scholar
  6. Kuhn, H.W., and A.W. Tucker. 1950. Nonlinear programming. In Proceedings of the second Berkeley symposium on mathematical statistics and probability, ed. J. Neyman. Berkeley: University of California Press.Google Scholar
  7. Lagrange, J.L. 1762. Essai sur une nouvelle méthode pour determiner les maxima et minima des formules intégrales indéfinies. Miscellanea Taurinensia 2: 173–95. (Also Théorie des fonctions analytiques, 1797.)Google Scholar
  8. Slater, M. 1950. Lagrange multipliers revisited: a contribution to non-linear programming. Cowles Commission Discussion Paper, Math. 403, November. University of Chicago.Google Scholar

Copyright information

© Macmillan Publishers Ltd. 2018

Authors and Affiliations

  • S. N. Afriat
    • 1
  1. 1.