The New Palgrave Dictionary of Economics

2018 Edition
| Editors: Macmillan Publishers Ltd

Homogeneous and Homothetic Functions

  • J.-P. Crouzeix
Reference work entry
DOI: https://doi.org/10.1057/978-1-349-95189-5_1108

Abstract

Given a cone E in the Euclidean space \( {\mathbb{R}}^n \) and an ordering ≼ on E (i.e. a reflexive and transitive binary relation on E), the ordering is said to be homothetic if for all pairs x, y, ∈E

JEL Classifications

C0 
This is a preview of subscription content, log in to check access

Bibliography

  1. Barten, A.P., and V. Bohrn. 1981. Consumer theory. In Handbook of mathematical economics, ed. K.J. Arrow and M.D. Intriligator, vol. 2, 381–429. New York: North-Holland Publishing Company.Google Scholar
  2. Diewert, W.E. 1981. Duality approaches to microeconomic theory. In Handbook of mathematical economics, ed. K.J. Arrow and M.D. Intriligator, vol. 2, 353–399. New York: North-Holland Publishing Company.Google Scholar
  3. Green, J., and W.P. Heller. 1981. Mathematical analysis and convexity with application to economics. In Handbook of mathematical economics, ed. K.J. Arrow and M.D. Intriligator, vol. 1, 1–52. New York: North-Holland Publishing Company.Google Scholar
  4. Katzner, D.W. 1970. Static demand theory. New York: Macmillan.Google Scholar
  5. Newman, P. 1969. Some properties of concave functions. Journal of Economic Theory 1: 291–314.CrossRefGoogle Scholar

Copyright information

© Macmillan Publishers Ltd. 2018

Authors and Affiliations

  • J.-P. Crouzeix
    • 1
  1. 1.