The New Palgrave Dictionary of Economics

2018 Edition
| Editors: Macmillan Publishers Ltd

Mathematical Economics

  • Gerard Debreu
Reference work entry
DOI: https://doi.org/10.1057/978-1-349-95189-5_1083

Abstract

A summary of the emergence and triumph of mathematical economics. The modern phase was deeply influenced by John von Neumann’s article of 1928 on games and his paper of 1937 on economic growth. His 1944 Theory of Games and Economic Behavior, coauthored by Oskar Morgenstern, went beyond differential calculus and linear algebra and paved the way for the axiomatization of economic theory. This has enabled researchers to use precisely stated and flawlessly proved results, in the quest for the most direct link between the assumptions and the conclusions of a theorem. Economic theory is fated for a long mathematical future.

Keywords

Activity analysis Allais, M. Samuelson, P. Anderson, R. Arrow, K. Asymptotic equality Aumann, R. Axiomatized theory Brouwer’s fixed point theorem Brown, D. Commodity space Competitive equilibrium Contract curve Convexity Cores Cournot, A. Debreu, G. Differential calculus Econometrics Edgeworth, F. Existence of general equilibrium First theorem of welfare economics Fixed point theorems General equilibrium Geometry Hicks, J. Hyperplanes Implicit prices Kakutani’s fixed point theorem Koopmans, T. Lebesgue measure Linear programming Lyapunov’s theorem Mathematical economics McKenzie, L. Nash, J. Measure theory Minimax theorem Morgenstern, O. Non-standard analysis Pareto, V. Price space Real vector space Robinson, A. Sard’s theorem Scarf, H. Set of negligible agents Shubik, M. Sonnenschein, H. Uncertainty Uniqueness of equilibrium Vind, K. von Neumann, J. von Neumann’s lemma Wald, A. Walras, L. Walras’s Law 

JEL Classifications

B4 
This is a preview of subscription content, log in to check access.

Bibliography

  1. Allais, M. 1943. A la recherche d’une discipline économique. Paris: Imprimerie Nationale.Google Scholar
  2. Anderson, R.M. 1978. An elementary core equivalence theorem. Econometrica 46: 1483–1487.CrossRefGoogle Scholar
  3. Arrow, K.J. 1951. An extension of the basic theorems of classical welfare economics. In Proceedings of the second Berkeley symposium on mathematical statistics and probability, ed. J. Neyman, 507–532. Berkeley: University of California Press.Google Scholar
  4. Arrow, K.J. 1953. Le rôle des valeurs boursières pour la répartition la meilleure des risques. In Econométrie, 41–48. Paris: Centre National de la Recherche Scientifique.Google Scholar
  5. Arrow, K.J., and G. Debreu. 1954. Existence of an equilibrium for a competitive economy. Econometrica 22: 265–290.CrossRefGoogle Scholar
  6. Arrow, K.J., and F.H. Hahn. 1971. General competitive analysis. San Francisco: Holden-Day.Google Scholar
  7. Arrow, K.J., and M.D. Intriligator, eds. 1981–5. Handbook of mathematical economics, vols. 1, 2 and 3. Amsterdam: North-Holland Publishing Company.Google Scholar
  8. Aumann, R.J. 1964. Markets with a continuum of traders. Econometrica 32: 39–50.CrossRefGoogle Scholar
  9. Balasko, Y. 1986. Foundations of the theory of general equilibrium. New York: Academic.Google Scholar
  10. Brouwer, L.E.J. 1912. Über Abbildungen von Mannigfaltigkeiten. Mathematische Annalen 71: 97–115.CrossRefGoogle Scholar
  11. Brown, D.J., and A. Robinson. 1972. A limit theorem on the cores of large standard exchange economies. Proceedings of the National Academy of Sciences of the USA 69: 1258–1260.CrossRefGoogle Scholar
  12. Cournot, A. 1838. Recherches sur les principes mathématiques de la théorie des richesses. Paris: L. Hachette.Google Scholar
  13. Debreu, G. 1951. The coefficient of resource utilization. Econometrica 19: 273–292.CrossRefGoogle Scholar
  14. Debreu, G. 1952. A social equilibrium existence theorem. Proceedings of the National Academy of Sciences of the USA 38: 886–893.CrossRefGoogle Scholar
  15. Debreu, G. 1959. Theory of value: An axiomatic analysis of economic equilibrium. New York: Wiley.Google Scholar
  16. Debreu, G. 1970. Economies with a finite set of equilibria. Econometrica 38: 387–392.CrossRefGoogle Scholar
  17. Debreu, G. 1974. Excess demand functions. Journal of Mathematical Economics 1: 15–21.CrossRefGoogle Scholar
  18. Debreu, G. 1977. The axiomatization of economic theory. Unpublished lecture given at the University of Bonn, 22 April.Google Scholar
  19. Debreu, G. 1982. Existence of competitive equilibrium. Chapter 15 in Arrow and Intriligator (1981–5).Google Scholar
  20. Dierker, E. 1974. Topological methods in Walrasian economics. Berlin: Springer.CrossRefGoogle Scholar
  21. Dierker, E. 1975. Gains and losses at core allocations. Journal of Mathematical Economics 2: 119–128.CrossRefGoogle Scholar
  22. Dierker, E. 1982. Regular economies. Chapter 17 in Arrow and Intriligator (1981–5).Google Scholar
  23. Edgeworth, F.Y. 1881. Mathematical psychics. London: Kegan Paul.Google Scholar
  24. Gale, D. 1956. The closed linear model of production. In Linear inequalities and related systems, ed. H.W. Kuhn and A.W. Tucker. Princeton: Princeton University Press.Google Scholar
  25. Hicks, J.R. 1939. Value and capital. Oxford: Clarendon Press.Google Scholar
  26. Hildenbrand, W. 1974. Core and equilibria of a large economy. Princeton: Princeton University Press.Google Scholar
  27. Hildenbrand, W. 1982. Core of an economy. Chapter 18 in Arrow and Intriligator (1981–5).Google Scholar
  28. Kakutani, S. 1941. A generalization of Brouwer’s fixed point theorem. Duke Mathematical Journal 8: 457–459.CrossRefGoogle Scholar
  29. Koopmans, T.C., ed. 1951. Activity analysis of production and allocation. New York: Wiley.Google Scholar
  30. Lyapunov, A.A. 1940. Sur les fonctions-vecteurs complètement additives. Izvestiia Akademii Nauk SSSR 4: 465–478.Google Scholar
  31. Mantel, R. 1974. On the characterization of aggregate excess demand. Journal of Economic Theory 7: 348–353.CrossRefGoogle Scholar
  32. Mas-Colell, A. 1985. The theory of general economic equilibrium: A differentiable approach. Cambridge: Cambridge University Press.Google Scholar
  33. McKenzie, L.W. 1954. On equilibrium in Graham’s model of world trade and other competitive systems. Econometrica 22: 147–161.CrossRefGoogle Scholar
  34. Minkowski, H. 1911. Theorie der konvexen Körper. In Gesammelte Abhandlungen, vol. 3, 131–229. Leipzig/Berlin: Teubner.Google Scholar
  35. Nash, J.F. 1950. Equilibrium points in n-person games. Proceedings of the National Academy of Sciences of the USA 36: 48–49.CrossRefGoogle Scholar
  36. Pareto, V. 1896–7. Cours d’économie politique. Lausanne: Rouge.Google Scholar
  37. Pareto, V. 1909. Manuel d’économie politique. Paris: Giard.Google Scholar
  38. Pareto, V. 1911. Economie mathématique. In Encyclopédie des sciences mathématiques, vol. I(4), 591–640. Paris: Gauthier-Villars.Google Scholar
  39. Robinson, A. 1966. Non-standard analysis. Amsterdam: North-Holland.Google Scholar
  40. Samuelson, P.A. 1947. Foundations of economic analysis. Cambridge, MA: Harvard University Press.Google Scholar
  41. Sard, A. 1942. The measure of the critical points of differentiable maps. Bulletin of the American Mathematical Society 48: 883–890.CrossRefGoogle Scholar
  42. Scarf, H. 1962. An analysis of markets with a large number of participants. In Recent advances in game theory, ed. H. Scarf. Princeton: Princeton University Press.Google Scholar
  43. Scarf, H. 1973. (With the collaboration of T. Hansen) The computation of economic equilibria. New Haven: Yale University Press.Google Scholar
  44. Scarf, H. 1982. The computation of equilibrium prices: an exposition. Chapter 21 in Arrow and Intriligator (1981–5).Google Scholar
  45. Scarf, H.E., and J.B. Shoven. 1984. Applied general equilibrium analysis. Cambridge: Cambridge University Press.Google Scholar
  46. Shubik, M. 1959. Edgeworth market games. In Contributions to the theory of games, vol. 4, Annals of Mathematical Studies 40. Princeton: Princeton University Press.Google Scholar
  47. Smale, S. 1981. Global analysis and economics. Chapter 8 in Arrow and Intriligator (1981–5).Google Scholar
  48. Sonnenschein, H. 1973. Do Walras’ identity and continuity characterize the class of community excess demand functions? Journal of Economic Theory 6: 345–354.CrossRefGoogle Scholar
  49. Vind, K. 1964. Edgeworth-allocations in an exchange economy with many traders. International Economic Review 5: 165–177.CrossRefGoogle Scholar
  50. von Neumann, J. 1928. Zur Theorie der Gesellschaftsspiele. Mathematische Annalen 100: 295–320.CrossRefGoogle Scholar
  51. von Neumann, J. 1937. Über ein ӧkonomisches Gleichungssystem und eine Verallgemeinerung des Brouwerschen Fixpunktsatzes. In Ergebnisse eines mathematischen Kolloquiums, vol. 8, 73–83. Wien: Deuticke.Google Scholar
  52. von Neumann, J., and O. Morgenstern. 1944. Theory of games and economic behavior. Princeton: Princeton University Press.Google Scholar
  53. Wald, A. 1935. Über die eindeutige positive Lӧsbarkeit der neuen Produktionsgleichungen. Ergebnisse eines mathematischen Kolloquiums 6: 12–20.Google Scholar
  54. Wald, A. 1936a. Über die Produktionsgleichungen der ӧkonomischen Wertlehre. In Ergebnisse eines mathematischen Kolloquiums, vol. 7, 1–6. Leipzig: Deuticke.Google Scholar
  55. Wald, A. 1936b. Über einige Gleichungssysteme der mathematischen Ӧkonomie. Zeitschrift für Nationalӧkonomie 7: 637–670.CrossRefGoogle Scholar
  56. Walras, L. 1874–7. Eléments d’économie politique pure. Lausanne: L. Corbaz.Google Scholar

Copyright information

© Macmillan Publishers Ltd. 2018

Authors and Affiliations

  • Gerard Debreu
    • 1
  1. 1.