The New Palgrave Dictionary of Economics

2018 Edition
| Editors: Macmillan Publishers Ltd

Bernoulli, Daniel (1700–1782)

  • S. L. Zabell
Reference work entry


Swiss mathematician and theoretical physicist; born at Groningen, 8 February 1700; died at Basel, 17 March 1782.


Bernoulli, D. Bernoulli, N. Cramer, G. D’Alembert, C. Euler, L. Goldbach, C. Laplace, P. S. Logarithmic utility Maximum likelihood Moral expectation Probability St Petersburg paradox Utility 

JEL Classifications

This is a preview of subscription content, log in to check access.


  1. Baker, K.M. 1975. Condorcet: From natural philosophy to social mathematics. Chicago: University of Chicago Press.Google Scholar
  2. Bell, E.T. 1937. Men of mathematics. New York: Simon & Schuster; Harmondsworth: Pelican Books, 1953.Google Scholar
  3. Bernoulli, D. 1738. Hydrodynamica, sive de viribus et motibus fluidorum commentarii …. Strasbourg: Johann Reinhold Dulsseker.Google Scholar
  4. Daston, L.J. 1979. D’Alembert’s critique of probability theory. Historia Mathematica 6: 259–279.CrossRefGoogle Scholar
  5. Jeffrey, R.C. 1983. The logic of decision. 2nd ed. Chicago: University of Chicago Press.Google Scholar
  6. Keynes, J.M. 1921. A treatise on probability. London: Macmillan.Google Scholar
  7. Laplace, P.S. 1812. Théorie analytique des probabilités. 2nd ed. Paris, 1814; 3rd ed, 1820.Google Scholar
  8. Maistrov, L.E. 1974. Probability theory: A historical sketch. New York: Academic Press.Google Scholar
  9. Martin-Lof, A. 1985. A limit theorem which clarifies the ‘Petersburg paradox’. Journal of Applied Probability 22: 634–643.CrossRefGoogle Scholar
  10. Menger, K. 1934. Die Unsicherheitsmoment in der Wehrtlehre. Zeitschrift für Nationalökonomie 5: 459–485. Trans. in Essays in mathematical economics in honor of Oskar Morgenstern, ed. M. Shubik. Princeton: Princeton University Press, 1967.Google Scholar
  11. Pearson, K. 1978. The history of statistics in the 17th and 18th centuries. New York: Macmillan.Google Scholar
  12. Savage, L.J. 1954. The foundations of statistics. New York: Wiley.Google Scholar
  13. Sheynin, O.B. 1970. Daniel Bernoulli on the normal law. Biometrika 57: 99–102.CrossRefGoogle Scholar
  14. Sheynin, O.B. 1972. D. Bernoulli’s work on probability. RETE Strukturgeschichte der Naturwissenschaften 1: 273–300.Google Scholar
  15. Straub, H. 1970. Bernoulli, Daniel. In Dictionary of scientific biography, ed. C.C. Gillispie, vol. 2, 136–146. New York: Scribner’s.Google Scholar
  16. Todhunter, I. 1865. A history of mathematical theory of probability from the time of Pascal to that of Laplace. Cambridge: Cambridge University Press, repr. New York: Chelsea, 1961.Google Scholar

Copyright information

© Macmillan Publishers Ltd. 2018

Authors and Affiliations

  • S. L. Zabell
    • 1
  1. 1.