Skip to main content

Computational Simulations of Microbubbles

  • 374 Accesses

Abstract

Accurate tracking of microbubbles plays a significant role in many engineering processes. Computational methods, including the volume of fluid (VOF), and coupled level set and volume of fluid (CLSVOF) are validated against a comprehensive experimental dataset, including detailed information describing the interface deformation, and transient development of the stage by stage shape data. Using the fully developed shape and subsequent deformation of rising microbubbles that have been captured experimentally and analyzed in detail using image processing, the corresponding VOF and CLSVOF results are accurately assessed for the small-scale differences between these interface capturing methods. Computational prediction on the removal of microbubbles is also examined in a haemodialysis airtrap. Such a model can provide useful information about the effectiveness and performance of an airtrap which is a commonly device used in a clinical setting for kidney failure patients.

Keywords

  • Microbubbles
  • Free surface
  • Airtrap
  • Hemodialysis
  • VOF
  • CLSVOF
  • Computational fluid dynamics
  • Transient analysis
  • Interface deformation
  • Microemboli

This is a preview of subscription content, access via your institution.

References

  • J.U. Brackbill, D.B. Kothe, C. Zemach, A continuum method for modeling surface tension. J. Comput. Phys. 100(2), 335–354 (1992)

    CrossRef  MathSciNet  MATH  Google Scholar 

  • M. Favelukis, C. Hung Ly, Unsteady mass transfer around spheroidal drops in potential flow. Chem. Eng. Sci. 60(24), 7011–7021 (2005)

    CrossRef  Google Scholar 

  • U. Forsberg, P. Jonsson, C. Stegmayr, B. Stegmayr, A high blood level in the air trap reduces microemboli during hemodialysis. Artif. Organs 36(6), 525–529 (2012)

    CrossRef  Google Scholar 

  • G. Son, Efficient implementation if a coupled level-set and volume of fluid method for three dimensioanl incompressible two phase flows. Numer Heat Transf 43, 549–565 (2003)

    CrossRef  Google Scholar 

  • M. Wu, M. Gharib, Experimental Studies on the Shape and Path of Small Air Bubbles Rising in Clean Water. Physics of Fluids 14(7), pp. L45–L56, 2029–2581 (2002)

    Google Scholar 

  • C.W. Hirt, B.D. Nichols, Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39(1), 201–225 (1981)

    CrossRef  MATH  Google Scholar 

  • J. Hua, J. Lou, Numerical simulation of bubble rising in viscous liquid. J. Comput. Phys. 222(2), 769–795 (2007)

    CrossRef  MATH  Google Scholar 

  • P. Jonsson, L. Karlsson, U. Forsberg, M. Gref, C. Stegmayr, B. Stegmayr, Air bubbles pass the security system of the dialysis device without alarming. Artif. Organs 31(2), 132–139 (2007)

    CrossRef  Google Scholar 

  • G. Keshavarzi, T.J. Barber, G. Yeoh, A. Simmons, J.A. Reizes, Two-dimensional computational analysis of microbubbles in hemodialysis. Artif. Organs 37, E139–E144 (2013)

    CrossRef  Google Scholar 

  • G. Keshavarzi, R.S. Pawell, T.J. Barber, G.H. Yeoh, Transient analysis of a single rising bubble used for numerical validation for multiphase flow. Chem. Eng. Sci. 112(0), 25–34 (2014)

    CrossRef  Google Scholar 

  • R. Krishna, J.M. van Baten, Rise characteristics of gas bubbles in a 2D rectangular column: VOF simulations vs experiments. Int. Commun. Heat Mass Transf. 26(7), 965–974 (1999)

    CrossRef  Google Scholar 

  • D. Legendre, R. Zenit, J.R. Velez-Cordero, On the deformation of gas bubbles in liquids. Phys. Fluids 24(4), 043303–043312 (2012)

    CrossRef  Google Scholar 

  • A.C. Lochiel, P.H. Calderbank, Mass transfer in the continuous phase around axisymmetric bodies of revolution. Chem. Eng. Sci. 19(7), 471–484 (1964)

    CrossRef  Google Scholar 

  • M. Ohta, M. Tsuji, Y. Yoshida, M. Sussman, The transient dynamics of a small bubble rising in a low morton number regime. Chem. Eng. Technol. 31(9), 1350–1357 (2008)

    CrossRef  Google Scholar 

  • S. Ozdemir, Investigation of air bubble motion in water through a vertical narrow rectangular channel by using image processing techniques, Phd, Middle east technical university, 2005

    Google Scholar 

  • F. Raymond, J.M. Rosant, A numerical and experimental study of the terminal velocity and shape of bubbles in viscous liquids. Chem. Eng. Sci. 55(5), 943–955 (2000)

    CrossRef  Google Scholar 

  • M. Rudman, Volume-tracking methods for interfacial flow calculations. Int. J. Numer. Methods Fluids 24(7), 671–691 (1997)

    CrossRef  MathSciNet  MATH  Google Scholar 

  • M.S.P. Smereka, Axisymmetric free boundary problems. J. Fluid Mech. 341, 269–294 (1997)

    CrossRef  MathSciNet  MATH  Google Scholar 

  • G. Son, N. Hur, A coupled level set and volume-of-fluid method for the buoyancy- driven motion of fluid particels. Numer Heat Transf B 42, 523–542 (2002)

    CrossRef  Google Scholar 

  • C.J. Stegmayr, P. Jonsson, U. Forsberg, B.G. Stegmayr, Development of air micro bubbles in the venous outlet line: an in vitro analysis of various air traps used for hemodialysis. Artif. Organs 31(6), 483–488 (2007)

    CrossRef  Google Scholar 

  • M. Sussman, E.G. Puckett, A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows. J. Comput. Phys. 162, 301–337 (2000)

    CrossRef  MathSciNet  MATH  Google Scholar 

  • M. Sussman, P. Smereka, S. Osher, A level set approach for computing solutions to incompressible two-phase flow. J. Comput. Phys. 114(1), 146–159 (1994)

    CrossRef  MATH  Google Scholar 

  • S. Takagi, Y. Matsumoto, H. Huang, Numerical analysis of a single rising bubble using boundary-fitted coordinate system. JSME Int J Ser B 40(1), 42–50 (1997)

    CrossRef  Google Scholar 

  • Ubbink, Numerical Prediction of Two Fluid Systems with Sharp Interfaces. PhD Dissertation, University of London, 1997

    Google Scholar 

  • B. Yang, A. Prosperetti, S. Takagi, The transient rise of a bubble subject to shape or volume changes. Phys. Fluids 15(9), 2640–2648 (2003)

    CrossRef  MathSciNet  MATH  Google Scholar 

  • G.H. Yeoh, J. Tu, in Computational techniques for multiphase flows. Solution methods for multi-phase flows, Chapter 3 (Butterworth-Heinemann, Oxford, 2010), pp. 95–242

    CrossRef  Google Scholar 

  • D.L. Youngs, Time-dependent multi-material flow with large fluid distortion, Numerical Methods for Fluid Dynamics, Morton, K.W. and Baines, M.J. (Eds.), Academic Press, London, 273–285 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gholamreza Keshavarzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer Nature Singapore Pte Ltd.

About this entry

Cite this entry

Keshavarzi, G., Barber, T.J. (2016). Computational Simulations of Microbubbles. In: Yeoh, G. (eds) Handbook of Multiphase Flow Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-4585-86-6_7-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-4585-86-6_7-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-4585-86-6

  • Online ISBN: 978-981-4585-86-6

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering