Skip to main content

Substrate Integrated Waveguide Antennas

  • Reference work entry
  • First Online:
Handbook of Antenna Technologies

Abstract

Research and development progress in the area of millimeter-wave antennas has been associated since recent years with substrate integrate waveguide (SIW). SIW was proposed and studied as a class of efficient integrated transmission lines compatible with planar technologies, offering incomparable self-consistent shielding and high-quality factor performances. SIW can be designed as open wave-guiding structures and energy leakage will take place when the uniformity of those guides is perturbed or they are not excited in an appropriate mode. This leakage effects may be used positively for the design of antennas by deliberately introducing perturbations in these guides so that they radiate in a controlled fashion. With the advantages of broadband, efficiency, and high gain, a specific benefit of such antennas is their compatibility with SIW from which they are derived, thus facilitating an integrated design. In this chapter, H-plane horns, leaky-wave structures (long and periodic) and tapered slot antennas are presented. Special attention is given for tapered slot antennas and arrays with their application in the design of passive imaging systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 2,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bozzi M, Georgiadis A, Wu K (2011) Review of substrate-integrated waveguide circuits and antennas. IET Microwaves Antennas Propag 5:909–920

    Article  Google Scholar 

  • Bozzi M, Pasian M, Perregrini L (2014) Modeling of losses in substrate integrated waveguide components. In: International conference on numerical electromagnetic modeling and optimization for RF, microwave, and terahertz applications (NEMO), Pavia, 14–16 May 2014, pp 1–4

    Google Scholar 

  • Cai Y, Qian Z-P, Zhang Y-S, Jin J, Cao W-Q (2002) Bandwidth enhancement of SIW horn antenna loaded with air-via perforated dielectric slab. IEEE Antennas Wirel Propag Lett 13:571–574

    Google Scholar 

  • Caloz C, Jackson DR, Itoh T (2011) Leaky-wave antennas. In: Frontiers in antennas: next generation design & engineering. McGraw-Hill, New York

    Google Scholar 

  • Cao W, Chen ZN, Hong W, Zhang B, Liu A (2014) A beam scanning leaky-wave slot antenna with enhanced scanning angle range and flat gain characteristic using composite phase-shifting transmission line. IEEE Trans Antennas Propag 62(11):5871–5875

    Article  MathSciNet  Google Scholar 

  • Cassivi Y, Perregrini L, Arcioni P, Bressan M, Wu K, Conciauro G (2002) Dispersion characteristics of substrate integrated rectangular waveguide. IEEE Microwave Wirel Compon Lett 12(9):333–335

    Article  Google Scholar 

  • Cheng YJ, Wu K, Hong W (2008) Power handling capability of substrate integrated waveguide interconnects and related transmission line systems. IEEE Trans Adv Packag 31(4):900–909

    Article  Google Scholar 

  • Cheng YJ, Hong W, Wu K, Fan Y (2011) Millimeter-wave substrate integrated waveguide long slot leaky-wave antennas and two-dimensional multibeam applications. IEEE Trans Antennas Propag 59(1):40–47

    Article  Google Scholar 

  • D’Orazio William (2004) Study of substrate integrated waveguide circulators for millimeter wave applications. In: Mémoire présenté en vue de l'obtention du diplôme de maîtrise ès sciences appliquées (génie électrique)’Thèse – École polytechnique

    Google Scholar 

  • Deslandes D (2010) Design equations for tapered microstrip-to-substrate integrated waveguide transitions. In: International microwave symposium, Anaheim, 23–28 May 2010, pp 704–707

    Google Scholar 

  • Deslandes D, Wu K (2003) Single-substrate integration technique of planar circuits and waveguide components. IEEE Trans Microwave Theory Tech 51:593–596

    Article  Google Scholar 

  • Deslandes D, Wu K (2005) Substrate integrated waveguide leaky-wave antenna: concept and design considerations. In: Microwave conference proceedings, APMC 2005. Asia-pacific conference proceedings, Suzhou, pp 346–349

    Google Scholar 

  • Deslandes D, Wu K (2006) Accurate modeling, wave mechanisms, and design considerations of a substrate integrated waveguide. IEEE Trans Microwave Theory Tech 54(6):2516–2526

    Article  Google Scholar 

  • Ding Y, Wu K (2008) Miniaturization techniques of substrate integrated waveguide circuits. In: IEEE MTT-S inter microwave workshop series (IMWS) on art of miniaturizing RF and microwave passive components, Chengdu, pp 63–66

    Google Scholar 

  • Ding Y, Wu K (2009) A 4 x 4 ridge substrate integrated waveguide (RSIW) slot array antenna. IEEE Antennas Wirel Propag Lett 8:561–564

    Article  Google Scholar 

  • Ding Y, Wu K (2010) T-type folded substrate integrated waveguide (TFSIW) slot array antenna. IEEE Trans Antennas Propag 58(5):1792–1795

    Article  Google Scholar 

  • Dion A (1958) Nonresonant slotted arrays. IRE Trans Antennas Propag 1958:360–365

    Article  Google Scholar 

  • Djerafi T, Wu K (2012a) 77 GHz planar Butler matrix without crossover. IEEE Trans Antennas Propag 60(10):4949–4954

    Article  Google Scholar 

  • Djerafi T, Wu K (2012b) Corrugated substrate integrated waveguide (SIW) antipodal linearly tapered slot antenna array fed by quasi-triangular power divider. Prog Electromagn Res C 26:139–151

    Article  Google Scholar 

  • Djerafi T, Wu K (2013) Substrate integrated waveguide (SIW) techniques: the state-of-the-art developments and future trends. J Univ Electron Sci Technol China 42(2):171–192

    Google Scholar 

  • Djerafi T, Ghassemi N, Kramer O, Youzkatli-el-Khatib B, Guntupalli AB, Wu K (2012a) Small footprint multilayered millimeter-wave antennas and feeding networks for multi-dimensional scanning and high-density integrated systems. Radioengineering 21(4):935–945

    Google Scholar 

  • Djerafi T, Aubert H, Wu K (2012b) Ridge substrate integrated waveguide (RSIW) dual-band hybrid ring coupler. IEEE Microwave Wirel Compon Lett 22(2):70–72

    Article  Google Scholar 

  • Djerafi T, Ghiotto A, Wu K (2012c) Antipodal fin-line waveguide to substrate integrated waveguide transition. In: IEEE MTT-S international microwave symposium digest, Montreal, pp 1–3

    Google Scholar 

  • Djerafi T, Patrovsky A, Wu K, Tatu SO (2013) Recombinant waveguide power divider. IEEE Trans Microwave Theory Tech 61(11):3884–3891

    Article  Google Scholar 

  • Doghri A, Djerafi T, Ghiotto A, Wu K (2011) Early demonstration of a passive millimeter-wave imaging system using substrate integrated waveguide technology. In: Mediterranean microwave symposium (MMS), 2011 11th, Hammamet, pp 215–218

    Google Scholar 

  • Doghri A, Djerafi T, Ghiotto A, Wu K (2013) SIW 90-degree twist for substrate integrated circuits and systems. In: IEEE MTT-S international microwave symposium digest, Seattle, pp 1–3

    Google Scholar 

  • Doghri A, Ghiotto A, Djerafi T, Wu K (2014) Broadband E-plane junction for three-dimensional substrate integrated waveguide circuits and systems. IEEE Microwave Wirel Compon Lett 24(11):739–741

    Article  Google Scholar 

  • El Khatib BY, Djerafi T, Wu K (2012a) Substrate integrated waveguide vertical interconnects for three-dimensional integrated circuits. IEEE Trans Compon Packag Manuf Technol 2(9):1526–1535

    Article  Google Scholar 

  • El Khatib BY, Djerafi T, Wu K (2012b) Three-dimensional architecture of substrate integrated waveguide feeder for fermi tapered slot antenna array applications. IEEE Trans Antennas Propag 60(10):4610–4618

    Article  Google Scholar 

  • Esquius-Morote M, Fuchs B, Zürcher J-F, Mosig JR (2013a) A printed transition for matching improvement of SIW horn antenna. IEEE Trans Antennas Propag 61(4):1923–1930

    Article  Google Scholar 

  • Esquius-Morote M, Fuchs B, Zurcher J, Mosig JR (2013b) Novel thin and compact H-plane SIW horn antenna. IEEE Trans Antennas Propag 61(6):2911–2920

    Article  Google Scholar 

  • Galejs J (1962) Excitation of slots in a conducting screen above a lossy dielectric half space. IRE Trans AP-10:436–443

    Google Scholar 

  • Gazit E (1988) Improved design of the Vivaldi antenna. Proc Inst Elect Eng pt H 135:89–92

    Google Scholar 

  • Gibson PJ (1979) The Vivaldi aerial. In: Proceedings of the 9th European microwave conference, Brighton, pp 101–105

    Google Scholar 

  • Goldsmith PF, Hsieh C-T, Huguenin GR, Kapitzky J, Moore EL (1993) Focal plane imaging systems for millimeter wavelengths. IEEE Trans Microwave Theory Tech 41:1664–1675

    Article  Google Scholar 

  • Grigoropoulos N, Young PR (2004) Compact folded waveguides. In: 34th European microwave conference, Amsterdam, pp 973–976

    Google Scholar 

  • Grigoropoulos N, Izquierdo BS, Young PR (2005) Substrate integrated folded waveguides (SIFW) and filters. IEEE Microwave Wirel Compon Lett 15(12):829–831

    Article  Google Scholar 

  • Guntupalli AB (2014) Low-cost integrated waveguide antenna front-end solutions for fifth generation cellular systems and beyond. Dissertation thesis, Ecole polytechnique de Montreal

    Google Scholar 

  • Hao Z-C, Hong W, Chen J-X, Chen X-P, Wu K (2005) A novel feeding technique for antipodal linearly tapered slot antenna array. IEEE MTT-S Int Microw Symp Dig 12–17:1641–1643

    Google Scholar 

  • Hong W, Wang Y, Lai QH, Liu B (2006) Half mode substrate integrated waveguide: a new guided wave structure for microwave and millimeter wave application. In: Proceedings of the joint 31st international conference on infrared millimeter waves and 14th international conference on terahertz electron, Shanghai

    Google Scholar 

  • Hyneman RF (1959) Closely-spaced transverse slots in rectangular waveguide. IRE Trans 1959:335–342

    Google Scholar 

  • Johansson JF (1989) A moment method analysis of linearly tapered slot antennas. In: IEEE antennas and propagation society international symposium, San Jose, pp 383–386

    Google Scholar 

  • Kim SG, Chang K (2004) Ultra wideband exponentially-tapered antipodal Vivaldi antennas. In: IEEE AP-S, Monterey, pp 2273–2276

    Google Scholar 

  • Lewis LR, Fasset M, Hunt J (1974) A broadband stripline array element. In: IEEE antennas and propagation society international symposium (digest), Atlanta, pp 335–337

    Google Scholar 

  • Li ZL, Wu K (2004) A new approach to integrated horn antennas. In: Proceedings of international of symposium on antenna technology and applied electromagnetics, Montreal, pp 535–538

    Google Scholar 

  • Li L, Chen X, Khazaka R, Wu K (2009) A transition from substrate integrated waveguide (SIW) to rectangular waveguide. In: Asia pacific microwave conference, 2009, Singapore, pp 2605–2608

    Google Scholar 

  • Li J, Wen G, Xiao F (2010) Broadband transition between rectangular waveguide and substrate integrated waveguide. Electron Lett 46(3):223–224

    Article  Google Scholar 

  • Lu K (1997) An efficient method for analysis of arbitrary nonuniform transmission lines. IEE Trans Microwave Theory Tech 45(1):9, 14

    Article  Google Scholar 

  • Mallahzadeh AR, Esfandiarpour S (2012) Wideband H-plane horn antenna based on ridge substrate integrated waveguide (RSIW). IEEE Antennas Wirel Propag Lett 11:85–88

    Article  Google Scholar 

  • Martinez-Ros AJ, Gomez-Tornero JL, Goussetis G (2010) Planar leaky-wave antenna with flexible control of the complex propagation constant. IEEE Trans Antennas Propag 60(3):1625–1630

    Article  Google Scholar 

  • Meinel H (1995) Commercial applications of millimeterwaves – history, present status and future trends. IEEE Trans Microwave Theory Tech 43(7):1639–1653

    Article  Google Scholar 

  • Moldovan E, Bosisio RG, Wu K (2006) W-band multiport substrate integrated waveguide circuits. IEEE Trans Microwave Theory Tech 54:625–632

    Article  Google Scholar 

  • Nanzer J (2012) Microwave and millimeter-wave remote sensing for security applications. Artech House, Norwood

    Google Scholar 

  • Nesic A (1991) Endfire slot line antennas excited by a Coplanar waveguide. In: IEEE AP-S international symposium, digest, London, pp 700–702

    Google Scholar 

  • Oliner AA, Jackson DR, Volakis JL (2007) Leaky-wave antennas, Chapter 11. In: Antenna engineering handbook, 4th edn. McGraw-Hill, New York

    Google Scholar 

  • Patrovsky A, Daigle M, Wu K (2007) Millimeter-wave wideband transition from CPW to substrate integrated waveguide on electrically thick high-permittivity substrates. In: Proceedings of 37th European Microwave Conference (EuMC37), Munich, pp 138–141

    Google Scholar 

  • Pozar DM (1983) Surface wave effects for millimeter wave printed antennas. In: Proceedings of the antennas and propagation society international symposium, Houston, vol 21, pp 692–695

    Google Scholar 

  • Pozar DM (2011) Microwave engineering, 4th edn. Wiley, New York

    Google Scholar 

  • Prasad SN, Mahapatra S (1979) A novel MIC slot line aerial. In: Proceedings 9th European microwave conference, Brighton, pp 120–124

    Google Scholar 

  • Salmon NA (2004) Scene simulation for passive and active millimetre and sub-millimetre wave imaging for security scanning and medical applications. SPIE 5619:129–135

    Google Scholar 

  • Sato H, Sawaya K, Arai N, Wagatsuma Y, Mizuno K (2003) Broadband FDTD analysis of fermi antenna with narrow width substrate. In: IEEE antennas and propagation society international symposium, 2003, Columbus, vol 1, pp 261–264

    Google Scholar 

  • Scharp GS (1982) Continuous slot antennas. US Patent 4,328,502, 4 May 1982

    Google Scholar 

  • Schaubert DH (1993) Scanning characteristics of stripline- fed tapered slot antennas on dielectric substrates. In: Proceedings of the 1993 antenna applications symposium, Monticello

    Google Scholar 

  • Schoebel J, Herrero P (2010) Planar antenna technology for mm-wave automotive radar, sensing, and communications. In: Kouemou G (ed) Radar technology InTech. ISBN:978-953-307-029-2, doi:10.5772/7185. http://www.intechopen.com/books/radar-technology/planar-antenna-technology-for-mm-wave-automotive-radar-sensing-and-communications

    Google Scholar 

  • Simons RN, Lee RQ, Perl TD (1992) Non-planar linearly tapered slot antenna with balanced microstrip feed. In: IEEE AP-S international symposium, Chicago, vol 4, pp 2109–2112

    Google Scholar 

  • Solbach K, Schneider R (1999) Review of antenna technology for millimeter wave automotive sensors. In: Proceedings of the European microwave conference, Munich, pp 139–142

    Google Scholar 

  • Sugawara S, Maita Y, Adachi K, Mori K, Mizuno K (1998) Characteristics of a MM-wave tapered slot antenna with corrugated edges. IEEE Trans Microwave Theory Tech 2:533–536

    Google Scholar 

  • Sutinjo A, Okoniewski M, Johnston RH (2008) Radiation from fast and slow traveling waves. IEEE Antennas Propag. Mag. 50(4):175–181

    Google Scholar 

  • Uchimura H, Takenoshita T, Fujii M (1998) Development of `a laminated waveguide. IEEE Trans Microwave Theory Tech 46(12):2438–2443

    Article  Google Scholar 

  • Vye D (2011) Divine innovation: 10 technologies changing the future of passive and control components. Microw J 54(11):22–42

    Google Scholar 

  • Walter CH (1965) Traveling wave antennas. McGraw-Hill, New York

    Google Scholar 

  • Wang N-B, Jiao Y-C, Song Y, Zhang L, Zhang FS (2009) A microstrip-fed logarithmically tapered slot antenna for wideband applications. J Electromagn Waves Appl 23(10):1335–1344

    Article  Google Scholar 

  • Wang H, Fang D-G, Zhang B, Che W-Q (2010) Dielectric loaded substrate integrated waveguide (SIW) H-plane horn antennas. IEEE Trans Antennas Propag 58(3):640–647

    Article  Google Scholar 

  • Wei J, Chen ZN, Qing X, Shi J, Xu J (2013) Compact substrate integrated waveguide slot antenna array with low back lobe. IEEE Antennas Wirel Propag Lett 12:999–1002

    Article  Google Scholar 

  • Whetten F, Balanis CA (1991) Meandering long slot leaky-wave antennas. IEEE Trans Antennas Propag 39(11):1553–1559

    Article  Google Scholar 

  • Wong M, Sebak AR, Denidni TA (2008) A broadside substrate integrated horn antenna. In: IEEE AP-S international symposium 2008, Atlanta, pp 1–4

    Google Scholar 

  • Wu K (2001) Integration and interconnect techniques of planar and nonplanar structures for microwave and millimeter-wave circuits-current status and future trend, In: Asia–pacific microwave conference 2001, Taipei, Taiwan, pp 411–416

    Google Scholar 

  • Wu C, Shen L, Deng GY, Shen Y, Litva J (1998) Experimental study of a wide band LTSA which is fed by an inverted microstrip line (IML). In: IEEE AP-S international symposium, San Diego, vol 4, pp 2328–2331

    Google Scholar 

  • Wu K, Deslandes D, Cassivi Y (2003) The substrate integrated circuits-a new concept for high-frequency electronics and optoelectronics. In: Telecommunications in modern satellite, cable and broadcasting service, TELSIKS 2003, 6th international conference, vol 1, pp P-III

    Google Scholar 

  • Wu K, Cheng YJ, Djerafi T, Hong W (2012) Substrate integrated millimeter-wave and terahertz antenna technology. Proc IEEE 100(7):2219–2232

    Article  Google Scholar 

  • Xia L, Xu R, Yan B, Li J, Guo Y, Wang J (2006) Broadband transition between air-filled waveguide and substrate integrated waveguide. Electron Lett 42(24):1403–1405

    Article  Google Scholar 

  • Xu F, Zhang Y, Hong W, Wu K, Cui TJ (2003) Finite difference frequency-domain algorithm for modeling guidedwave properties of substrate integrated waveguide. IEEE Trans Microwave Theory Tech MTT-51(11):2221–2227

    Google Scholar 

  • Xu J, Hong W, Hongjun H, Kuai Z, Wu K (2008) Half-mode substrate integrated waveguide (HMSIW) leaky-wave antenna for millimeter-wave applications. IEEE Antennas Wirel Propag Lett 7:85–88

    Article  Google Scholar 

  • Yamamoto S, Hirokawa J, Ando M (2002) A beam switching slot array with a 4-way Butler matrix installed in a single layer post-wall waveguide. In: Proceedings of the IEEE AP-S international 1241 symposium, San Antonio, vol 1, pp138–140

    Google Scholar 

  • Yan L, Hong W, Wu K, Cui TJ (2005) Investigations on the propagation characteristics of the substrate integrated waveguide based on the method of lines. Proc IEE Microwave Antennas Propag 152:35–42

    Google Scholar 

  • Yang Y, Wang Y, Fathy AE (2008) Design of compact Vivaldi antenna arrays for UWB see through wall applications, Progress In Electromagnetics Research, PIER vol 82, pp 401–418

    Google Scholar 

  • Yngvesson SK, Schaubert DH, Korzienowski TL et al (1985) Endfire tapered slot antennas on dielectric substrates. IEEE Trans Antennas Propag AP-33(12):1392–1400

    Google Scholar 

  • Yngvesson KS, Korzeniowski TL, Kim Y-S, Kollberg EL, Johansson JF (1989) The tapered slot antenna – a new integrated element for millimeter-wave applications. IEEE Trans Microwave Theory Tech 37(2):365–374

    Article  Google Scholar 

  • Zhu L, Wu K (2002) Field-extracted lumped-element models of coplanar stripline circuits and discontinuities for accurate radio-frequency design and optimization. IEEE Trans Microwave Theory Tech 50(4):1207–1215

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarek Djerafi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this entry

Cite this entry

Djerafi, T., Doghri, A., Wu, K. (2016). Substrate Integrated Waveguide Antennas. In: Chen, Z., Liu, D., Nakano, H., Qing, X., Zwick, T. (eds) Handbook of Antenna Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-4560-44-3_57

Download citation

Publish with us

Policies and ethics