Skip to main content

Frequency Selective Surfaces

  • Reference work entry
  • First Online:
Book cover Handbook of Antenna Technologies

Abstract

Traditionally, frequency selective surfaces (FSSs) comprising structures with periodicity in two dimensions have important applications as spatial filters in microwave and optics. Due to the manufacturing process, they are usually in the form of printed patches on a dielectric substrate or apertures in a conducting screen. Multiple FSS screens and dielectric layers can be stacked together to meet desirable spectral filter responses. For these structures, a surface discretization of the unknown currents and/or electric fields is more convenient, and efficient integral equation solutions are sought thereafter. Recent developments in manufacturing processes, material properties, and new wave phenomena call for periodic structures with three-dimensional (3D) unit-cell elements. There are situations that a volumetric discretization of the unit cell is more appropriate, and differential equation solutions are preferred. The advent of powerful commercial simulation tools allows effective FSS designs with more flexibility. Compounded with the popularity of 3D printings, some previously unimaginable FSS structures can now be cost-effectively realized. Exploitation of transmission and reflection information obtained from FSS also paves the way for better antenna designs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 2,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Joumayly M, Behdad N (2009) A new technique for design of low-profile, second-order, bandpass frequency selective surfaces. IEEE Trans Antennas Propag 57:452–459

    Article  Google Scholar 

  • Barton JH, Rumpf RC, Smith RW, Kozikowski CL, Zellner PA (2012) All-dielectric frequency selective surfaces with few number of periods. Prog Electromagn Res B 41:269–283

    Article  Google Scholar 

  • Barton JH, Garcia CR, Berry EA, May RG, Gray DT, Rumpf RC (2014) All-dielectric frequency selective surface for high power microwaves. IEEE Trans Antennas Propag 62:3652–3656

    Article  Google Scholar 

  • Bayatpur F, Sarabandi K (2008) Multipole spatial filters using metamaterial-based miniaturized-element frequency selective surfaces. IEEE Trans Microw Theory Tech 56:2742–2747

    Article  Google Scholar 

  • Behdad N, Al-Joumayly M, Salehi M (2009) A low profile third-order bandpass frequency selective surface. IEEE Trans Antennas Propag 57:460–466

    Article  Google Scholar 

  • Bossard JA, Werner DH, Mayer TS, Drupp RP (2005) A novel design methodology for reconfigurable frequency selective surfaces using genetic algorithms. IEEE Trans Antennas Propag 53:1390–1400

    Article  Google Scholar 

  • Bossard JA, Werner DH, Mayer TS, Smith JA, Tang YU, Drupp RP, Li L (2006) The design and fabrication of planar multiband metallodielectric frequency selective surfaces for infrared applications. IEEE Trans Antennas Propag 54:1265–1276

    Article  Google Scholar 

  • Bushbeck MD, Chan CH (1993) A tuneable, switchable dielectric grating. IEEE Microw Guid Wave Lett 3:296–298

    Article  Google Scholar 

  • Capolino F (2009) Theory and phenomena of metamaterials, CRC Press. Boca Raton, Florida

    Google Scholar 

  • Chan CH, Mittra R (1990) On the analysis of frequency selective surfaces using subdomain basis functions. IEEE Trans Antennas Propag 38:40–50

    Article  Google Scholar 

  • Chan CH, Tardy I, Yee JS (1992) Analysis of three closely coupled frequency selective surface. Arch Elek Ubertragung 46:321–327

    Google Scholar 

  • Chang CL, Wang WC, Lin HR, Hsieh FJ, Pun YB, Chan CH (2013) Tunable terahertz fishnet metamaterial. Appl Phys Lett 102:151903–151903-4

    Article  Google Scholar 

  • Chen CC (1970) Transmission through a conducting screen perforated periodically with apertures. IEEE Trans Microw Theory Tech 18:627–632

    Article  Google Scholar 

  • Chen QY, Qu SW, Zhang XQ, Xia MY (2012) Low-profile wideband reflectarray by novel elements with linear phase response. IEEE Antennas Wirel Propag Lett 11:1545–1547

    Article  Google Scholar 

  • Chen QY, Qu SW, Li JF, Chen Q, Xia MY (2013) An X-band reflectarray with novel elements and enhanced bandwidth. IEEE Antennas Wirel Propag Lett 12:317–320

    Article  Google Scholar 

  • Chin SK, Nicorovici NA, Mcphedran RC (1994) Green’s function and lattice sums for electromagnetic scattering by a square array of cylinders. Phys Rev E Stat Phys Plasmas Fluids Relat 49:4590–4602

    Article  Google Scholar 

  • Chiu CN, Chang KP (2009) A novel miniaturized-element frequency selective surface having a stable resonance. IEEE Antennas Wirel Propag Lett 8:1175–1177

    Article  Google Scholar 

  • Chow YL, Yang JJ, Fang DG, Howard GE (1991) A closed-form spatial Green’s function for the thick microstrip substrate. IEEE Trans Microw Theory Tech 39:588–592

    Article  Google Scholar 

  • Chu QX, Wang H (2008) A compact open-loop filter with mixed electric and magnetic coupling. IEEE Trans Microw Theory Tech 56:431–439

    Article  Google Scholar 

  • Cwik TA, Mittra R (1987) Scattering from a periodic array of free-standing arbitrarily shaped perfectly conducting or resistive patches. IEEE Trans Antennas Propag 35:1226–1234

    Article  Google Scholar 

  • Lima AC deC, Parker EA (1996) Fabry-Perot approach to the design of double layer FSS. Proc Inst Elect Eng Microw Antennas Propag 143:157–162

    Google Scholar 

  • Dickie R, Cahill R, Gamble HS, Fusco VF, Schuchinsky A, Grant N (2005) Spatial demultiplexing in the sub-mmwave band using multilayer free-standing frequency selective surfaces. IEEE Trans Antennas Propag 53:1903–1911

    Article  Google Scholar 

  • Dickie R, Cahill R, Gamble HS, Fusco VF, Henry M, Oldfield ML, Huggard PG, Howard P, Grant N, Munro Y, de Maagt P (2009) Submillimeter wave frequency selective surface with polarization independent spectral responses. IEEE Trans Antennas Propag 57:1985–1994

    Article  Google Scholar 

  • Dickie R, Cahill R, Fusco VF, Gamble HS, Mitchell N (2014) THz frequency selective surface filters for earth observation remote sensing instruments. IEEE Trans THz Sci Technol 1:450–461

    Article  Google Scholar 

  • Eibert TF, Volakis JL, Wilton DR, Jackson DR (1999) Hybrid FE/BI modeling of 3-D doubly periodic structures utilizing triangular prismatic elements and an MPIE formulation accelerated by the Ewald transformation. IEEE Trans Antennas Propag 47:843–850

    Article  Google Scholar 

  • Engheta N, Ziolkowski R (2006) Metamaterials: physics and engineering explorations. Wiley-Interscience. Hoboken, New Jersey

    Google Scholar 

  • Epp L, Chan CH, Mittra R (1992) Periodic structures with time-varying nonlinear loads. IEEE Trans Antennas Propag 40:251–256

    Article  Google Scholar 

  • Foroozesh A, Shafai L (2010) Investigation into the effects of the patch-type FSS superstrate on the high-gain cavity resonance antenna design. IEEE Trans Antennas Propag 58:258–270

    Article  Google Scholar 

  • Genovesi S, Costa F, Monorchio A (2012) Low-profile array with reduced radar cross section by using hybrid frequency selective surfaces. IEEE Trans Antennas Propag 60:2327–2335

    Article  Google Scholar 

  • Hamdy SMA, Parker EA (1982) Current distribution on the elements of a square loop frequency selective surface. Electron Lett 18:624–626

    Article  Google Scholar 

  • Harms P, Mittra R, Ko W (1994) Implementation of the periodic boundary condition in the finite-difference time-domain algorithm for FSS structures. IEEE Trans Antennas Propag 42:1317–1324

    Article  Google Scholar 

  • Huang J, Encinar JA (2007) Reflectarray antennas. Wiley-IEEE Press. Hoboken, New Jersey

    Google Scholar 

  • Jazi MN, Denidni TA (2010) Frequency selective surfaces and their applications for nimble-radiation pattern antennas. IEEE Trans Antennas Propag 58:2227–2237

    Article  Google Scholar 

  • Jazi MN, Denidni TA (2013) Electronically sweeping-beam antenna using a new cylindrical frequency-selective surface. IEEE Trans Antennas Propag 61:666–676

    Article  Google Scholar 

  • Jordan KE, Richter GR, Sheng P (1986) An efficient numerical evaluation of the Green’s function for the Helmholtz operator on periodic structures. J Comput Phys 63:222–235

    Article  MathSciNet  MATH  Google Scholar 

  • Jorgenson RE, Mittra R (1990) Efficient calculation of the free-space periodic Green’s function. IEEE Trans Antennas Propag 38:633–642

    Article  MathSciNet  MATH  Google Scholar 

  • Jorgenson RE, Mittra R (1991) Scattering from structured slabs having two-dimensional periodicity. IEEE Trans Antennas Propag 39:151–156

    Article  Google Scholar 

  • Kieburtz RB, Ishimaru A (1961) Scattering by a periodically aperture conducting screen. IRE Trans Antennas Propag 9:506–514

    Article  Google Scholar 

  • Kipp RA, Chan CH (1994) A numerically efficient technique for the method of moments solution to planar periodic structures in layered media. IEEE Trans Microw Theory Tech 42:635–643

    Article  Google Scholar 

  • Lee SW (1971) Scattering by dielectric-loaded screen. IEEE Trans Antennas Propag 19:656–665

    Article  Google Scholar 

  • Li MJ, Luk KM (2014) A wideband circularly polarized antenna for microwave and millimeter-wave applications. IEEE Trans Antennas Propag 62:1872–1879

    Article  Google Scholar 

  • Liu HL, Ford KL, Langley RJ (2009) Design methodology for a miniaturized frequency selective surface using lumped reactive components. IEEE Trans Antennas Propag 57:2732–2738

    Article  Google Scholar 

  • Luo GQ, Hong W, Hao ZC, Liu B, Li WD, Chen JX, Zhou HX, Wu K (2005) Theory and experiment of novel frequency selective surface based on substrate integrated waveguide technology. IEEE Trans Antennas Propag 53:4035–4043

    Article  Google Scholar 

  • Luo GQ, Hong W, Tang HJ, Wu K (2006) High performance frequency selective surface using cascading substrate integrated waveguide cavities. IEEE Microw Wirel Components Lett 16:648–650

    Article  Google Scholar 

  • Luo GQ, Hong W, Lai QH, Wu K, Sun LL (2007) Design and experimental verification of compact frequency-selective surface with quasi-elliptic bandpass response. IEEE Trans Microw Theory Tech 55:2481–2487

    Article  Google Scholar 

  • Luo GQ, Hong W, Lai QH, Sun LL (2008) Frequency-selective surfaces with two sharp sidebands realized by cascading and shunting substrate integrated waveguide cavities. IET Microw. Antennas Propag 2:23–27.

    Article  Google Scholar 

  • Ma K, Ma JG, Yeo KS, Do MA (2006) A compact size coupling controllable filter with separate electric and magnetic coupling paths. IEEE Trans Microw Theory Tech 54:1113–1119

    Article  Google Scholar 

  • Mittra R, Hall RC, Tsao CH (1984) Spectral-domain analysis of circular patch frequency selective surfaces. IEEE Trans Antennas Propag 32:533–536

    Article  Google Scholar 

  • Mittra R, Chan CH, Cwik T (1988) Techniques for analyzing frequency selective surfaces-a review. IEEE Proc 76:1593–1615

    Article  Google Scholar 

  • Munk BA (2000) Frequency selective surfaces: theory and design, Wiley, New York. ISBN: 978-0-471-37047-5, Apr

    Google Scholar 

  • Ohira M, Deguchi H, Tsuji M, Shigesawa H (2004) Multiband single-layer frequency selective surface designed by combination of genetic algorithm and geometry-refinement technique. IEEE Trans Antennas Propag 52:2925–2931

    Article  Google Scholar 

  • Ohira M, Deguchi H, Tsuji M, Shigesawa H (2005) Novel waveguide filters with multiple attenuation poles using dual-behavior resonance of frequency-selective surfaces. IEEE Trans Antennas Propag 53:3320–3326

    Google Scholar 

  • Ott RH, Kouyoumjian RG, Peters L Jr (1967) Scattering by a two-dimensional periodic array of narrow plates. Radio Sci 2:1347–1359

    Article  Google Scholar 

  • Parker EA, Hamdy SMA (1981) Rings as elements for frequency selective surfaces. Electron Lett 17:612–614

    Article  Google Scholar 

  • Pelton EL, Munk BA (1979) Scattering from periodic arrays of crossed dipoles. IEEE Trans Antennas Propag 27:323–330

    Article  Google Scholar 

  • Pous R, Pozar DM (1991) A frequency-selective surface using aperture couples microstrip patches. IEEE Trans Antennas Propag 39:1763–1769

    Article  Google Scholar 

  • Qu SW, Chen QY, Xia MY, Zhang XY (2014a) Single-layer dual-band reflectarray with single linear polarization. IEEE Trans Antennas Propag 62:199–205

    Article  Google Scholar 

  • Qu SW, Wu WW, Ng KB, Chen BJ,Chan C H, Pun EYB (2014b) Wideband terahertz reflectarrays with fixed/frequency-scanning beams. In: 2014 XXXIth URSI General Assembly and Scientific Symposium, Beijing, China

    Google Scholar 

  • Rahmat-Samii Y, Michelssen E (eds) (1999) Electromagnetic optimization by genetic algorithms. Wiley-Interscience, New York

    Google Scholar 

  • Rashid AK, Shen ZX (2010) A novel band-reject frequency selective surface with pseudo-elliptic response. IEEE Trans Antennas Propag 58:1220–1226

    Article  Google Scholar 

  • Rashid AK, Shen ZX (2011) Scattering by a two-dimensional periodic array of vertically placed microstrip lines. IEEE Trans Antennas Propag 59:2599–2606

    Article  MathSciNet  MATH  Google Scholar 

  • Rashid AK, Shen ZX, Li B (2012) An elliptical bandpass frequency selective structure based on microstrip lines. IEEE Trans Antennas Propag 60:4661–4669

    Article  Google Scholar 

  • Rashid AK, Li B, Shen Z (2014) An overview of three-dimensional frequency-selective structures. IEEE Trans Antennas Propag 56:43–67

    Article  Google Scholar 

  • Roden JA, Gedney SD, Kesler MP, Maloney JG, Harms PH (1998) Time-domain analysis of periodic structures at oblique incidence: orthogonal and nonorthogonal FDTD implementations. IEEE Trans Microw Theory Tech 46:420–427

    Article  Google Scholar 

  • Rubin BJ, Bertoni HL (1983) Reflection from a periodically perforated plane using a subsectional current approximation. IEEE Trans Antennas Propag 31:829–836

    Article  Google Scholar 

  • Sanz-Izquierdo B, Parker EA (2014) Dual polarized reconfigurable frequency selective surfaces. IEEE Trans Antennas Propag 62:764–771

    Article  Google Scholar 

  • Sanz-Izquierdo B, Parker EA, Batchelor JC (2010) Dual-band tunable screen using complementary split ring resonators. IEEE Trans Antennas Propag 58:3761–3765

    Article  Google Scholar 

  • Sanz-Izquierdo B, Parker EA, Batchelor JC (2011) Switchable frequency selective slot arrays. IEEE Trans Antennas Propag 59:2728–2731

    Article  Google Scholar 

  • Sarabandi K, Behdad N (2007) A frequency selective surface with miniaturized elements. IEEE Trans Antennas Propag 55:1239–1245

    Article  Google Scholar 

  • Schimert TR, Koch ME, Chan CH (1990) Analysis of scattering from frequency-selective surfaces in the infrared. J Opt Soc Am A 7:1545–1553

    Article  Google Scholar 

  • Schimert TR, Brouns AJ, Chan CH, Mittra R (1991) Investigation of millimeter-wave scattering from frequency selective surface. IEEE Trans Microw Theory Tech 39:315–322

    Article  Google Scholar 

  • Shi Y, Chan CH (2010) MLGFIM analysis of 3-D frequency selective structures using volume/surface integral equation. J Opt Soc Am A 27:308–318

    Article  Google Scholar 

  • Singh S, Singh R (1990) On the use of Shanks’ transform to accelerate the summation of slowly converging series. IEEE Trans Microw Theory Tech 39:608–610

    Article  Google Scholar 

  • Stroke GW (1967) Diffraction gratings. Encycl Phys 5/29:426–754

    Google Scholar 

  • Tsai FCE, Bialkowski ME (2003) Designing of a 161-element Ku-band microstrip reflectarray of variable size patches using an equivalent unit cell waveguide approach. IEEE Trans Antennas Propag 51:2953–2962

    Article  Google Scholar 

  • Tsao CH, Mittra R (1984) Spectral-domain analysis of frequency selective surfaces comprised of periodic arrays of cross dipoles and Jerusalem crosses. IEEE Trans Antennas Propag 32:478–486

    Article  Google Scholar 

  • Vardaxoglou JC (1977) Frequency selective surface: analysis and design, Research Studies Press, Taunton, England, June

    Google Scholar 

  • Veysoglu ME, Shin RT, Kong JA (1993) A finite-difference time-domain analysis of wave scattering from periodic surfaces: oblique incidence case. J Electron Waves Appl 7:1595–1607

    Article  Google Scholar 

  • Wood RW (1902) On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Philos Mag 4:396–402

    Article  Google Scholar 

  • Wu TK (1995) Frequency selective surface and grid array. Wiley-Interscience, New York. ISBN ISBN-13: 978-0471311898

    Google Scholar 

  • Wu WW, Qu SW, Zhang XQ (2014) Single-layer reflectarray with novel elements for wideband applications. Microw Opt Technol Lett 56:950–954

    Article  Google Scholar 

  • Xu RR, Zhao HC, Zong ZY, Wu W (2008) Dual-band capacitive loaded frequency selective surfaces with close band spacing. IEEE Microw Wirel Components Lett 18:782–784

    Article  Google Scholar 

  • Yan M, Qu S, Wang J, Zhang J, Zhang A, Xia S, Wang W (2014) A novel miniaturized frequency selective surface with stable resonance. IEEE Antennas Wirel Propag Lett 13:639–641

    Article  Google Scholar 

  • Yang HYD, Diaz R, Alexopoulos NG (1997) Reflection and transmission of waves from multilayer structures with planar implanted periodic material blocks. J Opt Soc Am B 14:2513–2521

    Article  Google Scholar 

  • Yi H, Qu SW, Ng KB, Chan CH (2014) 3-D printed discrete dielectric lens antennas with matching layer. ISAP, Kaohsiung

    Book  Google Scholar 

  • Yu YX, Chan CH (2000) Efficient hybrid spatial and spectral techniques in analyzing planar periodic structures with non-uniform discretizations. IEEE Trans Microw Theory Tech 48:1623–1627

    Article  Google Scholar 

  • Yu YM, Chiu CN, Chiou YP, Wu TL (2014) A novel 2.5-dimensional ultraminiaturized-element frequency selective surface. IEEE Trans Antennas Propag 62:3657–3663

    Article  Google Scholar 

  • Zhang YL, Hong W, Wu K, Chen JX, Tang HJ (2005) Novel substrate integrated waveguide cavity filter with defected ground structure. IEEE Trans Microw Theory Tech 53:1280–1287

    Article  Google Scholar 

Download references

Acknowledgement

The authors would like to express their gratitude to H. Yi of the University of Electronic Science and Technology of China and D. Q. Liu, P. Zhao, and K. B. Ng of the City University of Hong Kong for their contributions in the design, simulation, and measurement of some of the frequency selective surfaces, lens antennas, and reflectarrays illustrated in this chapter. This work was supported partly by a GRF grant from the Hong Kong Research Grants Council Project No. CityU 110713 and partly by the Natural Science Foundation of China (NSFC) Project No. 61371051.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to De Song Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this entry

Cite this entry

Wang, D.S., Qu, SW., Chan, C.H. (2016). Frequency Selective Surfaces. In: Chen, Z., Liu, D., Nakano, H., Qing, X., Zwick, T. (eds) Handbook of Antenna Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-4560-44-3_23

Download citation

Publish with us

Policies and ethics