Skip to main content

Metamaterials and Antennas

  • Reference work entry
  • First Online:
Handbook of Antenna Technologies

Abstract

A variety of antennas have been engineered with metamaterials and metamaterial-inspired constructs to improve their performance characteristics. Interesting examples include electrically small, near-field resonant parasitic (NFRP) antennas that require no matching network and have high radiation efficiencies. Experimental verification of their predicted behaviors has been obtained. This NFRP electrically small paradigm has led to a wide variety of multiband and multifunctional antenna systems. The introduction of active metamaterial constructs further augments the antenna designer’s toolbox and leads to systems with many interesting and useful properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 2,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aberle JT, Loepsinger-Romak R (2007) Antenna with non-foster matching networks. Morgan & Claypool Publishers, San Rafael

    Google Scholar 

  • Alici KB, Ozbay E (2007) Radiation properties of a split ring resonator and monopole composite. Phys Stat Sol (b) 244:1192–1196

    Article  Google Scholar 

  • Alú A, Bilotti F, Engheta N, Vegni L (2007) Subwavelength, compact, resonant patch antennas loaded with metamaterials. IEEE Trans Antennas Propag 55:13–25

    Article  Google Scholar 

  • Antoniades MA, Eleftheriades GV (2008) A folded-monopole model for electrically small NRI-TL metamaterial antennas. IEEE Ant Wireless Propag Lett 7:425–428

    Article  Google Scholar 

  • Antoniades MA, Eleftheriades GV (2009) A broadband dual-mode monopole antenna using NRI-TL metamaterial loading. IEEE Ant Wireless Propag Lett 8:258–261

    Article  Google Scholar 

  • Arslanagić S, Ziolkowski RW, Breinbjerg O (2007) Radiation properties of an electric Hertzian dipole located near-by concentric metamaterial spheres. Rad Sci 42:RS6S16

    Google Scholar 

  • Arslanagić S, Ziolkowski RW (2010) Active coated nano-particle excited by an arbitrarily located electric Hertzian dipole – resonance and transparency effects. J Opt 12:024014

    Article  Google Scholar 

  • Arslanagić S, Ziolkowski RW (2012) Directive properties of active coated nano-particles. Advance Electromagn 1:57–64

    Article  Google Scholar 

  • Arslanagić S, Ziolkowski RW (2013) Jamming of quantum emitters by active coated nano-particles. IEEE J Sel Topics Quantum Electron 19:4800506

    Article  Google Scholar 

  • Arslanagić S, Ziolkowski RW (2014) Influence of active nano particle size and material composition on multiple quantum emitter enhancements: their enhancement and jamming effects. Prog Electromagn Res 149:85–99

    Article  Google Scholar 

  • Best SR (2004) The radiation properties of electrically small folded spherical helix antennas. IEEE Trans Antennas Propag 52:953–960

    Article  Google Scholar 

  • Best SR (2005) Low Q electrically small linear and elliptical polarized spherical dipole antennas. IEEE Trans Antennas Propag 53:1047–1053

    Article  Google Scholar 

  • Best SR (2009) A low Q electrically small magnetic (TE mode) dipole. IEEE Ant Wireless Propag Lett 8:572–575

    Article  Google Scholar 

  • Bilotti F, Alú A, Vegni L (2008) Design of miniaturized metamaterial patch antennas with μ-negative loading. IEEE Trans Antennas Propag 56:1640–1647

    Article  Google Scholar 

  • Buell K, Mosallaei H, Sarabandi K (2006) A substrate for small patch antennas providing tunable miniaturization factors. IEEE Trans Microw Theor Tech 54:135–146

    Article  Google Scholar 

  • Caloz C, Itoh T (2005) Electromagnetic metamaterials: transmission line theory and microwave applications. Wiley-IEEE, Hoboken

    Book  Google Scholar 

  • Caloz C, Itoh T, Rennings A (2008) CRLH traveling-wave and resonant metamaterial antennas. IEEE Ant Propag Mag 50:25–39

    Article  Google Scholar 

  • Chu LJ (1948) Physical limitations of omni-directional antennas. J Appl Phys 19:1163–1175

    Article  Google Scholar 

  • Dong Y, Itoh T (2012) Metamaterial-based antennas. Proc IEEE 100:2271–2285

    Article  Google Scholar 

  • Eleftheriades GV, Balmain KG (eds) (2005) Negative-refraction metamaterials fundamental principles and applications. Wiley-IEEE, Hoboken

    Google Scholar 

  • Eleftheriades GV, Antoniades MA, Qureshi F (2007) Antenna applications of negative-refractive-index transmission-line structures. IET Microw Ant Propag 1:12–22

    Article  Google Scholar 

  • Engheta N, Ziolkowski RW (2005) A positive future for double negative metamaterials. IEEE Microwav Theor Tech 53:1535–1556

    Article  Google Scholar 

  • Engheta N, Ziolkowski RW (eds) (2006) Metamaterials: physics and engineering explorations. Wiley-IEEE Press, Hoboken, NJ

    Google Scholar 

  • Enoch S, Tayeb G, Sabouroux Gúerin PN, Vincent P (2002) A metamaterial for directive emission. Phys Rev Lett 89:213902

    Article  Google Scholar 

  • Erentok A, Luljak PL, Ziolkowski RW (2005) Characterization of a volumetric metamaterial realization of an artificial magnetic conductor for antenna applications. IEEE Trans Ant Propag 53:160–172

    Article  Google Scholar 

  • Erentok A, Ziolkowski RW (2007a) A hybrid optimization method to analyze metamaterial-based electrically small antennas. IEEE Trans Ant Propag 55:731–741

    Article  Google Scholar 

  • Erentok A, Ziolkowski RW (2007b) An efficient metamaterial-inspired electrically-small antenna. Microw Opt Tech Lett 49:1287–1290

    Article  Google Scholar 

  • Erentok A, Ziolkowski RW (2007c) Two-dimensional efficient metamaterial-inspired electrically-small antenna. Microw Opt Tech Lett 49:1669–1673

    Article  Google Scholar 

  • Erentok A, Lee D, Ziolkowski RW (2007d) Numerical analysis of a printed dipole antenna integrated with a 3D AMC block. IEEE Ant Wireless Propag Lett 6:134–136

    Article  Google Scholar 

  • Erentok A, Ziolkowski RW, Nielsen JA, Greegor RB, Parazzoli CG, Tanielian MH, Cummer SA, Popa BI, Hand T, Vier DC, Schultz S (2007b) Low frequency lumped element-based negative index metamaterial. Appl Phys Lett 91:184104

    Article  Google Scholar 

  • Erentok A, Ziolkowski RW (2008) Metamaterial-inspired efficient electrically-small antennas. IEEE Trans Ant Propag 56:691–707

    Article  Google Scholar 

  • Franson SJ, Ziolkowski RW (2009) Confirmation of zero-N behavior in a high gain grid structure at millimeter-wave frequencies. IEEE Ant Wireless Propag Lett 8:387–390

    Article  Google Scholar 

  • Geng J, Ziolkowski RW, Jin R, Liang X (2011) Numerical study of active open cylindrical coated nano-particle antennas. IEEE Photon 3:1093–1110

    Article  Google Scholar 

  • Geng J, Ziolkowski RW, Jin R, Liang X (2012) Detailed performance characteristics of vertically polarized, cylindrical, active coated nano-particle antennas. Rad Sci 47, RS2013

    Article  Google Scholar 

  • Geng J, Jin R, Liang X, Ziolkowski RW (2013) Active cylindrical coated nano-particle antennas: polarization-dependent scattering properties. J Electromagnet Wave Appl (JEMWA). doi:10.1080/09205071.2013.809669

    Google Scholar 

  • Gordon JA, Ziolkowski RW (2007) The design and simulated performance of a coated nano-particle laser. Opt Express 15:2622–2653

    Article  Google Scholar 

  • Gordon JA, Ziolkowski RW (2008) CNP optical metamaterials. Opt Express 16:6692–6716

    Article  Google Scholar 

  • Greegor RB, Parazzoli CG, Nielsen JA, Tanielian MH, Vier DC, Schultz S, Holloway CL, Ziolkowski RW (2009) Demonstration of impedance matching using a mu-negative (MNG) metamaterial. IEEE Ant Wireless Propag Lett 8:92–95

    Article  Google Scholar 

  • Gustafsson M, Sohl C, Kristensson G (2009) Illustrations of new physical bounds on linearly polarized antennas. IEEE Trans Antennas Propag 57:1319–1327

    Article  Google Scholar 

  • Herraiz-Martnez J, Garca-Muoz LE, Gonzlez-Ovejero D, Gonzlez-Posadas V, Segovia-Vargas D (2009) Dual-frequency printed dipole loaded with split ring resonators. IEEE Ant Wireless Propag Lett 8:137–140

    Article  Google Scholar 

  • Ikonen PMT, Alitalo P, Tretyakov SA (2007) On impedance bandwidth of resonant patch antennas implemented using structures with engineered dispersion. IEEE Ant Wireless Propag Lett 6:186–190

    Article  Google Scholar 

  • Imhof PD, Ziolkowski RW, Mosig JR (2006) Highly isotropic, low loss epsilon negative (ENG) unit cells at UHF frequencies. In: Proc European conference on antennas and propagation, EuCAP2006, European Space Agency, Noordwijk, The Netherlands, ESA SP-626, pp 552

    Google Scholar 

  • Imhof PD (2006) Metamaterial-based epsilon negative (ENG) media: analysis and designs. Ecole Polytechnique Fédérale de Lausanne (EPFL) Master Thesis, Lausanne, Switzerland

    Google Scholar 

  • Jin P, Ziolkowski RW (2009) Low Q, electrically small, efficient near field resonant parasitic antennas. IEEE Trans Ant Propag 57:2548–2563

    Article  Google Scholar 

  • Jin P, Ziolkowski RW (2010a) Broadband, efficient, electrically small metamaterial-inspired antennas facilitated by active near-field resonant parasitic elements. IEEE Trans Ant Propag 58:318–327

    Article  Google Scholar 

  • Jin P, Ziolkowski RW (2010b) Metamaterial-inspired, electrically small Huygens sources. IEEE Ant Wireless Propag Lett 9:501–505

    Article  Google Scholar 

  • Jin P, Ziolkowski RW (2010c) Multiband extensions of the electrically small metamaterial-engineered Z antenna. IET Microwav Ant Propag 4:1016–1025

    Article  Google Scholar 

  • Jin P, Ziolkowski RW (2011) Multi-frequency, linear and circular polarized, metamaterial-inspired near-field resonant parasitic antennas. IEEE Trans Ant Propag 59:1446–1459

    Article  Google Scholar 

  • Jin P, Lin CC, Ziolkowski RW (2012) Multifunctional, electrically small, conformal near-field resonant parasitic antennas. IEEE Ant Wireless Propag Lett 11:200–204

    Article  Google Scholar 

  • Kim OS, Breinbjerg O (2009) Miniaturized self-resonant split-ring resonator antenna. Electronics Lett 45:196–197

    Article  Google Scholar 

  • Kim OS, Breinbjerg O, Yaghjian AD (2010) Electrically small magnetic dipole antennas with quality factors approaching the Chu lower bound. IEEE Trans Ant Propag 58:1898–1906

    Article  Google Scholar 

  • Kim OS (2010) Low-Q electrically small spherical magnetic dipole antennas. IEEE Trans Ant Propag 58:2210–2217

    Article  Google Scholar 

  • Lai A, Leong MKH, Itoh T (2007) Infinite wavelength resonant antennas with monopolar radiation pattern based on periodic structures. IEEE Trans Ant Propag 55:868–876

    Article  Google Scholar 

  • Lee DH, Chauraya A, Vardaxoglou Y, Park WS (2008) A compact and low-profile tunable loop antenna integrated with inductors. IEEE Ant Wireless Propag Lett 7:621–624

    Article  Google Scholar 

  • Liberal I, Ederra I, Gonzalo R, Ziolkowski RW (2014) Induction theorem analysis of resonant nanoparticles: design of a Huygens source nanoparticle laser. Phys Rev Appl 1:044002

    Article  Google Scholar 

  • Lin CC, Ziolkowski RW, Nielsen JA, Tanielian MH, Holloway CL (2010) An efficient, low profile, electrically small, VHF 3D magnetic EZ antenna. Appl Phys Lett 96:104102

    Article  Google Scholar 

  • Lin CC, Ziolkowski RW (2010) Dual-band 3D magnetic EZ antenna. Microw Opt Tech Lett 52:971–975

    Article  Google Scholar 

  • Lin CC, Jin P, Ziolkowski RW (2011) Electrically small dual-band and circularly polarized magnetically-coupled near-field resonant parasitic wire antennas. IEEE Trans Ant Propag 59:714–724

    Article  Google Scholar 

  • Linvill JG (1953) Transistor negative-impedance converters. Proc IRE 41:725–729

    Article  Google Scholar 

  • Martinez A, Piqueras MA, Marti J (2006) Generation of highly directional beam by k-space filtering using a metamaterial flat slab with a small negative index of refraction. Appl Phys Lett 89:131111

    Article  Google Scholar 

  • Mirzaei H, Eleftheriades GV (2013) A resonant printed monopole antenna with an embedded non-Foster matching network. IEEE Trans Ant Propag 61:5363–5371

    Article  Google Scholar 

  • Mumcu G, Sertel K, Volakis JL (2009) Miniature antenna using printed coupled lines emulating degenerate band edge crystals. IEEE Trans Ant Propag 57:1618–1624

    Article  Google Scholar 

  • Park J-H, Ryu YH, Lee JG, Lee JH (2007) Epsilon negative zeroth-order resonator antenna. IEEE Trans Ant Propag 55:3710–3712

    Article  Google Scholar 

  • Qureshi F, Antoniades MA, Eleftheriades GV (2005) Compact and low-profile metamaterial ring antenna with vertical polarization. IEEE Ant Wireless Propag Lett 4:333–336

    Article  Google Scholar 

  • Sáenz E, Gonzalo R, Ederra I, Vardaxoglou JC, de Maagt P (2008) Resonant meta-surface superstrate for single and multifrequency dipole antenna arrays. IEEE Trans Ant Propag 56:951–960

    Article  Google Scholar 

  • Sanada A, Kimura M, Awai I, Caloz C, Itoh T (2004) A planar zeroth-order resonator antenna using a left-handed transmission line. In: Proc. 34th European Microwave Conference, Amsterdam, The Netherlands, pp 1341–1344

    Google Scholar 

  • Smith DR, Padilla WJ, Vier DC, Nemat-Nasser SC, Schultz S (2000) Composite medium with simultaneously negative permeability and permittivity. Phys Rev Lett 84:4184–4187

    Article  Google Scholar 

  • Stuart HR, Tran C (2005) Subwavelength microwave resonators exhibiting strong coupling to radiation modes. Appl Phys Lett 87:151108

    Article  Google Scholar 

  • Stuart HR, Pidwerbetsky A (2006) Electrically small antenna elements using negative permittivity resonators. IEEE Trans Ant Propag 54:1664–1653

    Article  Google Scholar 

  • Stuart HR, Tran C (2007) Small spherical antennas using arrays of electromagnetically coupled planar elements. IEEE Ant Wireless Propag Lett 6:7–10

    Article  Google Scholar 

  • Sussman-Fort SE, Rudish RM (2009) Non-Foster impedance matching of electrically-small antennas. IEEE Trans Ant Propag 57:2230–2241

    Article  Google Scholar 

  • Ta SX, Park I, Ziolkowski RW (2012) Dual-band wide-beam crossed asymmetric dipole antenna for GPS applications. Electronic Lett 48:1580–1581

    Article  Google Scholar 

  • Ta SX, Park I, Ziolkowski RW (2013a) Circularly polarized crossed dipole on an HIS for 2.4/5.2/5.8-GHz WLAN applications. IEEE Ant Wireless Propag Lett 12:1464–1467

    Article  Google Scholar 

  • Ta SX, Park I, Ziolkowski RW (2013b) Multi-band, wide-beam, circularly polarized, crossed asymmetrically barbed arrowhead dipole antenna for GPS applications. IEEE Trans Ant Propag 61:5771–5775

    Article  Google Scholar 

  • Ta SX, Han JJ, Park I, Ziolkowski RW (2013c) Wide-beam circularly polarized crossed scythe-shaped dipoles for global navigation satellite systems. J Electromagn Eng Sci 13:224–232

    Article  Google Scholar 

  • Tang MC, Zhu N, Ziolkowski RW (2013) Augmenting a modified Egyptian axe dipole antenna with non-Foster elements to enlarge its directivity bandwidth. IEEE Ant Wireless Propag Lett 12:421–424

    Article  Google Scholar 

  • Thal H (2006) New radiation Q limits for spherical wire antennas. IEEE Trans Ant Propag 54:2757–2763

    Article  Google Scholar 

  • Veselago VG (1968) Experimental demonstration of negative index of refraction. Sov Phys Usp 47:509–514

    Article  Google Scholar 

  • White CR, Colburn JS, Nagele RG (2012) A non-Foster VHF monopole antenna. IEEE Ant Wireless Propag Lett 21:584–587

    Article  Google Scholar 

  • Wu BI, Wang W, Pacheco J, Chen X, Grzegorczyk T, Kong JA (2005) A study of using metamaterials as antenna substrate to enhance gain. Progress in Electromagnetics Research, PIER 51, EMW Publishing, Cambridge, MA, pp 295–328

    Google Scholar 

  • Yaghjian AD, Best SR (2005) Impedance, bandwidth, and Q of antennas. IEEE Trans Ant Propag 53:1298–1324

    Article  Google Scholar 

  • Yaghjian AD, Stewart HR (2010) Lower bounds on the Q of electrically small dipole antennas. IEEE Trans Ant Propag 58:3114–3121

    Article  Google Scholar 

  • Yang F, Rahmat-Samii Y (2009) Electromagnetic band gap structures in antenna engineering. Cambridge University Press, New York

    Google Scholar 

  • Zhu J, Antoniades MA, Eleftheriades GV (2010) A compact tri-band monopole antenna with single-cell metamaterial loading. IEEE Trans Ant Propag 244:1031–1038

    Google Scholar 

  • Zhu N, Ziolkowski RW (2011) Active metamaterial-inspired broad bandwidth, efficient, electrically small antennas. IEEE Ant Wireless Propag Lett 10:1582–1585

    Article  Google Scholar 

  • Zhu N, Ziolkowski RW (2012a) Design and measurements of an electrically small, broad bandwidth, non-Foster circuit-augmented protractor antenna. Appl Phys Lett 101:024107

    Article  Google Scholar 

  • Zhu N, Ziolkowski RW (2012b) Broad bandwidth, electrically small antenna augmented with an internal non-Foster element. IEEE Ant Wireless Propag Lett 11:1116–1120

    Article  Google Scholar 

  • Zhu N, Ziolkowski RW (2013) Broad bandwidth, electrically small, non-Foster element-augmented antenna designs, analyses, and measurements. IEICE Trans Commun E96-B:2399–2409

    Article  Google Scholar 

  • Ziolkowski RW (2003) Design, fabrication, and testing of double negative metamaterials. IEEE Trans Ant Propag 51:1516–1529

    Article  Google Scholar 

  • Ziolkowski RW, Kipple A (2003) Application of double negative metamaterial to increase the power radiated by electrically small antennas. IEEE Trans Ant Propag 51:2626–2640

    Article  Google Scholar 

  • Ziolkowski RW (2004) Propagation in and scattering from a matched metamaterial having a zero index of refraction. Phys Rev E 70:046608

    Article  Google Scholar 

  • Ziolkowski RW, Kipple A (2005) Reciprocity between the effects of resonant scattering and enhanced radiated power by electrically small antennas in the presence of nested metamaterial shells. Phys Rev E 72:036602

    Article  Google Scholar 

  • Ziolkowski RW, Erentok A (2006) Metamaterial-based efficient electrically small antennas. IEEE Trans Ant Propag 54:2113–2130

    Article  Google Scholar 

  • Ziolkowski RW, Erentok A (2007) At and beyond the Chu limit: passive and active broad bandwidth metamaterial-based efficient electrically small antennas. IET Microwav Ant Propag 1:116–128

    Article  Google Scholar 

  • Ziolkowski RW (2008a) An efficient, electrically small antenna designed for VHF and UHF applications. IEEE Ant Wireless Propag Lett 7:217–220

    Article  Google Scholar 

  • Ziolkowski RW (2008b) Efficient electrically small antenna facilitated by a near-field resonant parasitic. IEEE Ant Wireless Propag Lett 7:580–583

    Google Scholar 

  • Ziolkowski RW, Jin P (2008) Metamaterial-based dispersion engineering to achieve phase center compensation in a log-periodic array. IEEE Trans Ant Propag 56:3619–3629

    Article  Google Scholar 

  • Ziolkowski RW, Lin CC, Nielsen JA, Tanielian MH, Holloway CL (2009a) Design and experimental verification of a 3D magnetic EZ antenna at 300 MHz. IEEE Ant Wireless Propag Lett 8:989–993

    Article  Google Scholar 

  • Ziolkowski RW, Jin P, Nielsen JA, Tanielian MH, Holloway CL (2009b) Design and experimental verification of Z antennas at UHF frequencies. IEEE Ant Wireless Propag Lett 8:1329–1333

    Article  Google Scholar 

  • Ziolkowski RW, Jin P, Lin CC (2011) Metamaterial-inspired engineering of antennas. Proc IEEE 99:1720–1731

    Article  Google Scholar 

  • Ziolkowski RW, Tang MC, Zhu N (2013) An efficient, broad bandwidth, high directivity, electrically small antenna. Microw Opt Technol Lett 55:1430–1434

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard W. Ziolkowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this entry

Cite this entry

Ziolkowski, R.W. (2016). Metamaterials and Antennas. In: Chen, Z., Liu, D., Nakano, H., Qing, X., Zwick, T. (eds) Handbook of Antenna Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-4560-44-3_14

Download citation

Publish with us

Policies and ethics