Skip to main content

Conductive Polymer Fibers for Sensor Devices

  • Reference work entry
  • First Online:
Handbook of Smart Textiles

Abstract

This chapter introduces the sensor applications of conductive fiber assemblies of poly(3,4-ethylenedioxythiophene) doped with poly(4-styrene sulfonate) (PEDOT:PSS) and regioregular poly(3-hexylthiophene) (P3HT). The scalable conductive multifilament of PEDOT:PSS and poly(vinyl alcohol) (PVA) was fabricated by a coagulation of spinning dope solution in cold methanol. The multifilament was composed of uniform circular fibers with an average diameter of 60 ± 5 μm and showed good enough mechanical properties for textile processes while maintaining electronic conductivity. The foldable textiles based on the PEDOT:PSS/PVA blended fibers worked as flexible electrodes to detect human heartbeats. Uniform P3HT nanofibers are obtained through a continuous electrospinning process using a homogeneous solution of high-molecular-weight P3HT. The P3HT nanofibers are oriented by collecting them on a rotating drum collector. Small physical inputs into the self-standing P3HT nanofiber assemblies give rise to additional contact among neighboring nanofibers, which results in a decreased contact resistance in the directions orthogonal to the nanofiber orientation. The P3HT nanofiber assemblies could detect pressure changes and bending angles by monitoring the resistance changes, and the sensor responses were repeatable. The organic-conductive fibers can be a platform for lightweight wearable electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hamedi M, Forchheimer R, Inganäs O (2007) Towards woven logic from organic electronic fibres. Nat Mater 6:357–362

    Article  Google Scholar 

  2. Hamedi M, Herlogsson L, Crispin X, Marcilla R, Berggren M, Inganäs O (2009) Fiber-embedded electrolyte-gated field-effect transistors for e-textiles. Adv Mater 21:573–577

    Article  Google Scholar 

  3. Lee MR, Eckert RD, Forberich K, Dennler G, Brabec CJ, Gaudiana RA (2009) Solar power wires based on organic photovoltaic materials. Science 324:232–235

    Article  Google Scholar 

  4. Cherenack K, Zysset C, Kinkeldei T, Münzenrieder N, Tröster G (2010) Woven electronic fibers with sensing and display functions for smart textiles. Adv Mater 22:5178–5182

    Article  Google Scholar 

  5. Hu B, Li D, Ala O, Manandhar P, Fan Q, Kasilingam D, Calvert PD (2011) Textile-based flexible electroluminescent devices. Adv Funct Mater 21:305–311

    Article  Google Scholar 

  6. Gumennik A, Stolyarov AM, Schell BR, Hou C, Lestoquoy G, Sorin F, McDaniel W, Rose A, Joannopoulos JD, Fink Y (2012) All-in-fiber chemical sensing. Adv Mater 24:6005–6009

    Article  Google Scholar 

  7. Windmiller JR, Wang J (2013) Wearable electrochemical sensors and biosensors: a review. Electroanalysis 25:29–46

    Article  Google Scholar 

  8. Zhu S, So JH, Mays R, Desai S, Barnes WR, Pourdeyhimi B, Dickey MD (2013) Ultrastretchable fibers with metallic conductivity using a liquid metal alloy core. Adv Funct Mater 23:2308–2314

    Article  Google Scholar 

  9. Lu W, Zu M, Byun J–H, Kim B–S, Chou T–W (2012) State of the art of carbon nanotube fibers: opportunities and challenges. Adv Mater 24:1805

    Article  Google Scholar 

  10. Behabtu N, Young CC, Tsentalovich DE, Kleinerman O, Wang X, Ma AWK, Bengio EA, ter Waarbeek RF, de Jong JJ, Hoogerwerf RE, Fairchild SB, Ferguson JB, Maruyama B, Kono J, Talmon Y, Cohen Y, Otto MJ, Pasquali M (2013) Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity. Science 339:182–186

    Article  Google Scholar 

  11. Jalili R, Aboutalebi SH, Esrafilzadeh D, Shepherd RL, Chen J, Aminorroaya-Yamini S, Konstantinov K, Minett AI, Razal JM, Wallace GG (2013) Scalable one-step wet-spinning of graphene fibers and yarns from liquid crystalline dispersions of graphene oxide: towards multifunctional textiles. Adv Funct Mater (in press). doi:10.1002/adfm.201300765

    Google Scholar 

  12. Shirakawa H, Louis EJ, MacDiarmid AG, Chiang CK, Heeger AJ (1977) Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x. J Chem Soc Chem Commun 16:578–580

    Article  Google Scholar 

  13. Skothem TA, Reynolds JR (2007) Handbook of conducting polymers, 3rd edn. CRC Press, Boca Raton/London/New York

    Google Scholar 

  14. McQuade DT, Pullen AE, Swager TM (2000) Conjugated polymer-based chemical sensors. Chem Rev 100:2537–2574

    Article  Google Scholar 

  15. Günes S, Neugebauer H, Sariciftci NS (2007) Conjugated polymer-based organic solar cells. Chem Rev 107:1324–1338

    Article  Google Scholar 

  16. Klauk H (2010) Organic thin-film transistors. Chem Soc Rev 39:2643–2666

    Article  Google Scholar 

  17. Facchetti A (2011) π-conjugated polymers for organic electronics and photovoltaic cell applications. Chem Mater 23:733–758

    Article  Google Scholar 

  18. Wang TZ, Joo J, Hsu CH, Epstein AJ (1995) Charge transport of camphor sulfonic acid-doped polyaniline and poly(o-toluidine) fibers: role of processing. Synth Met 68:207–211

    Article  Google Scholar 

  19. Pomfret SJ, Adams PN, Comfort NP, Monkman AP (1998) Inherently electrically conductive fibers wet spun from a sulfonic acid-doped polyaniline solution. Adv Mater 10:1351–1353

    Article  Google Scholar 

  20. Pomfret SJ, Adams PN, Comfort NP, Monkman AP (2000) Electrical and mechanical properties of polyaniline fibres produced by a one-step wet spinning process. Polymer 41:2265–2269

    Article  Google Scholar 

  21. Bowman D, Mattes BR (2005) Conductive fibre prepared from ultra-high molecular weight polyaniline for smart fabric and interactive textile applications. Synth Met 154:29–32

    Article  Google Scholar 

  22. Okuzaki H, Ishihara M (2003) Spinning and characterization of conducting microfibers. Macromol Rapid Commun 24:261–264

    Article  Google Scholar 

  23. Takahashi T, Ishihara M, Okuzaki H (2005) Poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) microfibers. Synth Met 152:73–76

    Article  Google Scholar 

  24. Jalili R, Razal JM, Innis PC, Wallace GG (2011) One-step wet-spinning of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) fibers and the origin of higher electrical conductivity. Adv Funct Mater 21:3363–3370

    Article  Google Scholar 

  25. Hopkins AR, Reynolds JR (2000) Crystallization driven formation of conducting polymer networks in polymer blends. Macromolecules 33:5221–5226

    Article  Google Scholar 

  26. Chen C, LaRue JC, Nelson RD, Kulinsky L, Madou MJ (2012) Electrical conductivity of polymer blends of poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate):N-methyl-2-pyrrolidinone and polyvinyl alcohol. J Appl Polym Sci 125:3134–3141

    Article  Google Scholar 

  27. Lewin M (2007) Handbook of fiber chemistry, 3rd edn. CRC Press, Boca Raton/London/New York

    Google Scholar 

  28. Ueno A, Akabane Y, Kato T, Hoshino H, Kataoka S, Ishiyama Y (2007) Capacitive sensing of electrocardiographic potential through cloth from the dorsal surface of the body in a supine position: a preliminary study. IEEE Trans Biomed Eng 54:759–766

    Article  Google Scholar 

  29. Lim YG, Kim KK, Park KS (2007) ECG recording on a bed during sleep without direct skin contact. IEEE Trans Biomed Eng 54:718–725

    Article  Google Scholar 

  30. Lee KM, Lee SM, Park KS (2010) Belt-type wireless and non-contact electrocardiogram monitoring system using flexible active electrode. Int J Bioelectromagn 12:153–157

    Google Scholar 

  31. Wartzek T, Eilebrecht B, Lem J, Lindner HJ, Leonhardt S, Water M (2011) EGC on the road: robust and unobtrusive estimation of heart rate. IEEE Trans Biomed Eng 58:3112–3120

    Article  Google Scholar 

  32. Lakes R (1993) Materials with structural hierarchy. Nature 361:511–515

    Article  Google Scholar 

  33. Someya T, Kato Y, Sekitani T, Iba S, Noguchi Y, Murase Y, Kawaguchi H, Sakurai T (2005) Conformal, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. Proc Natl Acad Sci U S A 102:12321–12325

    Article  Google Scholar 

  34. Mannsfeld SCB, Tee BC, Stoltenberg RM, Chen CVH, Barman S, Muir BVO, Sokolov AN, Reese C, Bao Z (2010) Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat Mater 9:859–864

    Article  Google Scholar 

  35. Kim DH, Lu N, Ma R, Kim YS, Kim RH, Wang S, Wu J, Won SM, Tao H, Islam A, Yu KJ, Kim T, Chowdhury R, Ying M, Xu L, Li M, Chung HJ, Keum H, McCormick M, Liu P, Zhang YW, Omenetto FG, Huang Y, Coleman T, Rogers JA (2011) Epidermal electronics. Science 333:838–843

    Article  Google Scholar 

  36. Takei K, Takahashi T, Ho JC, Ko H, Gillies AG, Leu PW, Fearing RS, Javey A (2010) Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. Nat Mater 9:821–826

    Article  Google Scholar 

  37. Lipomi DJ, Vosgueritchian M, Tee BC, Hellstrom SL, Lee JA, Fox CH, Bao Z (2011) Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat Nanotech 6:788–792

    Article  Google Scholar 

  38. Yamada T, Hayamizu Y, Yamamoto Y, Yomogida Y, Izadi-Najafabadi A, Futaba DN, Hata K (2011) A stretchable carbon nanotube strain sensor for human-motion detection. Nat Nanotech 6:296–301

    Article  Google Scholar 

  39. Pang C, Lee GY, Kim T, Kim SM, Kim HN, Ahn SH, Suh KY (2012) A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres. Nat Mater 11:795–801

    Article  Google Scholar 

  40. Sirringhaus H, Brown PJ, Friend RH, Nieisen MM, Bechgaard K, Langeveld-Voss BMW, Spiering AJH, Janssen RAJ, Meijer EW, Herwig P, de Leeuw DM (1999) Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature 401:685–688

    Article  Google Scholar 

  41. Wang C, Dong H, Hu W, Liu Y, Zhu D (2012) Semiconducting π-conjugated systems in field-effect transistors: a material odyssey of organic electronics. Chem Rev 112:2208–2267

    Article  Google Scholar 

  42. Cheng YJ, Yang SH, Hsu CS (2009) Synthesis of conjugated polymers for organic soar cell applications. Chem Rev 109:5868–5923

    Article  Google Scholar 

  43. Merlo JA, Frisbie CD (2003) Field effect conductance of conducting polymer nanofibers. J Polym Sci B Polym Phys 41:2674–2680

    Article  Google Scholar 

  44. Kim FS, Ren G, Jenekhe SA (2011) One-dimensional nanostructures of p-conjugated molecular systems: assembly, properties and applications from photovoltaics, sensors, and nanophotonics to nanoelectronics. Chem Mater 23:682–732

    Article  Google Scholar 

  45. Laforgue A, Robitaille L (2008) Fabrication of poly-3-hexylthiophene/polyethylene oxide nanofibers using electrospinning. Synth Met 158:577–584

    Article  Google Scholar 

  46. Kim T, Im JH, Choi HS, Yang SJ, Kim SW, Park CR (2011) Preparation and photoluminescence (PL) performance of a nanoweb of P3HT nanofibers with diameters below 100 nm. J Mater Chem 21:14231–14239

    Article  Google Scholar 

  47. Babel A, Li D, Xia Y, Jenekhe SA (2005) Electrospun nanofibers of blends of conjugated polymers: morphology, optical properties, and field-effect transistors. Macromolecules 38:4705–4711

    Article  Google Scholar 

  48. Lee S, Moon GD, Jeong U (2009) Continuous production of uniform poly(3-hexylthiophene) (P3HT) nanofibers by electrospinning and their electrical properties. J Mater Chem 19:743–748

    Article  Google Scholar 

  49. Chen JY, Kuo CC, Lai CS, Chen WC, Chen HL (2011) Manipulation on the morphology and electrical properties of aligned electrospun nanofibers of poly(3-hexylthiophene) for field-effect transistor applications. Macromolecules 44:2883–2892

    Article  Google Scholar 

  50. Chan KHK, Yamao T, Kotaki M, Hotta S (2010) Unique structural features and electrical properties of electrospun conjugated polymer poly(3-hexylthiophene) (P3HT) fibers. Synth Met 160:2587–2595

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mutsumi Kimura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Singapore

About this entry

Cite this entry

Kimura, M. (2015). Conductive Polymer Fibers for Sensor Devices. In: Tao, X. (eds) Handbook of Smart Textiles. Springer, Singapore. https://doi.org/10.1007/978-981-4451-45-1_9

Download citation

Publish with us

Policies and ethics