Skip to main content

Electric Functions of Textile Polymers

  • Reference work entry
  • First Online:

Abstract

Conventional textile materials are made of polymer materials. Many of the textile polymers are mostly dielectric materials. Dielectric polymers with low dielectric constant have been considered inactive to an electric field. However, they turned out to be electrically active. Textile polymers or their gels and elastomers are shown how they can be electrically active. The actions observed are electromechanical, mechanoelectrical, and electrooptical. Even the electromechanical functions have varieties of contractile, bending (or folding), crawling, vibration, and creeping deformation. Some of these polymers exhibit colossal dielectric constant at certain conditions. The characteristics suggest large power generation and novel functions. The electromechanical motility was applied for new type weaving technique that can be applicable for micro- and nano-fiber. Some of the materials for the textile polymers, such as poly (vinyl alcohol) and poly (vinyl chloride), show remarkable electrooptical functions, which can modulate refractive index by dc field application. These polymers can also imply effective piezoelectric function, too, suggesting these might be applied for energy-harvesting materials. These properties might suggest the possibility of conventional textile polymers in novel-type smart fiber and textiles.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hirai T et al (2001) Electrically active polymer materials – application of non-ionic polymer gel and elastomers for artificial muscles. In: Tao X (ed) Smart fibres, fabrics and clothing. Woodhead, Cambridge, pp 7–33

    Chapter  Google Scholar 

  2. Hirai T et al (1993) Actuation of poly(vinyl alcohol) gel by electric field. J Intell Mater Syst Struct 4:277–279

    Article  Google Scholar 

  3. Hirai T (1999) Polymer gel generating bending and crawling motion. WW-EAP Newsl 1(1):4–5

    Google Scholar 

  4. Hirai T, Watanabe M, Yamaguchi M (1999) PVC gel deforms like a tongue by applying an electric field. WW-EAP Newsl 1(2):7–8

    Google Scholar 

  5. Uddin MZ et al (2001) Electrically induced creeping and bending deformation of plasticized poly(vinyl chloride). Chem Lett 2001:360–361; Uddin MZ, Watanabe M, Shirai H, Hirai T (2002) Creeping and novel huge bending of plasticized PVC. J Rob Mechatronics 14:118–123

    Google Scholar 

  6. Hirai T et al (1996) Polyurethane elastomer actuator. Angew Makromol Chem 240:221–229

    Article  Google Scholar 

  7. Jang Y, Hirai T (2011) A control method for triblock copolymer actuators by nano-lamellar pattern. Soft Matter 7(22):10818–10823

    Article  Google Scholar 

  8. Jang Y, Hirai T (2011) Solvent-induced phase-inversion and electrical actuation of dielectric copolymer films. Mater Sci Appl 2(3):187–195

    Google Scholar 

  9. Tsurumi D, Hirai T (2013) Electrically induced oscillatory motion of dielectric soft polymer materials. In: 62nd SPSJ symposium on macromolecules, polymer preprints, vol 3637. The Society of Polymer Science, Kanazawa, p 2ESB12

    Google Scholar 

  10. Ali M et al (2011) Influence of plasticizer content on the transition of electromechanical behavior of PVC gel actuator. Langmuir 27(12):7902–7908

    Article  Google Scholar 

  11. Finch CA (1973) Polyvinyl alcohol; properties and applications. Wiley, New York

    Google Scholar 

  12. Peppas NA, Wright SL (1998) Drug diffusion and binding in ionizable interpenetrating networks from poly(vinyl alcohol) and poly(acrylic acid). Eur J Pharm Biopharm 46(1):15–29

    Article  Google Scholar 

  13. Hirai T (1991) Shape memory of PVA [poly(vinyl alcohol)] hydrogel prepared by freezing-and-thawing. Kobunshi 40(8):524–527

    Article  Google Scholar 

  14. Hirai T, Hayashi S (1991) Function and use poly(vinyl alcohol) hydrogel. Kobunshi Kako 40(5):225–230

    Google Scholar 

  15. Hirai T et al (1992) Effect of chemical crosslinking under elongation on shape restoring of poly(vinyl alcohol) hydrogel. J Appl Polym Sci 46(8):1449–1451

    Article  Google Scholar 

  16. Suzuki M (1991) Amphoteric polyvinyl alcohol hydrogel and electrohydrodynamic control method for artificial muscles. In: DeRossi D et al (eds) Polymer gels. Plenum Press, New York, pp 221–236

    Chapter  Google Scholar 

  17. Shiga T et al (1989) Bending of high-strength polymer gel in an electric field. Kobunshi Ronbunshu 46(11):709–713

    Article  Google Scholar 

  18. Hirai T et al (1991) Actuation of PVA gel by electric field. Polym Prepr Jpn 40(7):2116–2118

    Google Scholar 

  19. Hirai T et al (1991) Fluttering wings – first step for flying up-above into the sky? In: Preprints of second symposium on polymer gels, Tsukuba, 10–11 Dec 1991, p 129

    Google Scholar 

  20. Hirai T, Zheng J, Watanabe M (1999) Solvent-drag bending motion of polymer gel induced by an electric field. In: Proceedings of SPIE-the international society for optical engineering (Electroactive polymer actuators and devices), SanDiego, vol 3669. pp 209–217

    Google Scholar 

  21. Hirai T, Zheng J, Watanabe M, Shirai H, Yamaguchi M (2000) Electroactive nonionic polymer gel – swift bending and crawling motion. In: Furukawa T, Zhang QM, Bar-Cohen Y, Sheinbeim J (eds) Electroactive polymers (EAP). Materiasl Research Society, Pennsylvania, Boston, pp 267–272

    Google Scholar 

  22. Zheng J et al (2000) Electrically induced rapid deformation of nonionic gel. Chem Lett 5:500–501

    Article  Google Scholar 

  23. Amachi Y et al (2000) Polyurethane-PVA hydrogel film for artificial skin, etc., and its manufacture. In: Japan Kokai Tokkyo Koho. Nitta K.K., Japan. Jp., 4 pp

    Google Scholar 

  24. Amaike Y et al (2000) Polyurethane actuator. In: Japan Kokai Tokkyo Koho. Nitta K.K., Japan. Jp., 7 pp

    Google Scholar 

  25. Hirai T, Sugino T, Kasazaki T (1994) High-speed-response polyurethane gel activator. In: Japan Kokai Tokkyo Koho. Nitta K.K., Hirai Toshihiro. Jp., 5 pp

    Google Scholar 

  26. Watanabe M et al (1999) Effects of polymer networks on the bending electrostriction of polyurethanes. In: Stokke BT, Elgsaeter A (eds) Synthetic versus biological networks, vol 2, Wiley polymer networks group review series. Wiley, Chichester, pp 213–221

    Google Scholar 

  27. Watanabe M et al (1997) Bending deformation of monolayer polyurethane film induced by an electric field. Chem Lett 1997:773–774

    Article  Google Scholar 

  28. Su J, Zhang QM, Ting RY (1997) Space-charge-enhanced electromechanical response in thin-film polyurethane elastomers. Appl Phys Lett 71(3):386 (3 pages)

    Article  Google Scholar 

  29. Watanabe M, Shirai H, Hirai T (2001) Ionic polarization in bending-electrostrictive response of polyurethane films. J Appl Phys 90(12):6316–6320

    Article  Google Scholar 

  30. Watanabe M et al (2003) Bending electrostriction and space-charge distribution in polyurethane films. J Appl Phys 94(4):2494–2497

    Article  Google Scholar 

  31. Watanabe M et al (2001) Hysteresis in bending electrostriction of polyurethane films. J Appl Polym Sci 79(6):1121–1126

    Article  Google Scholar 

  32. Kornbluh R et al (2000) Ultra-high strain response of elastomeric polymer dielectrics. In: Materials Research Society symposium proceedings (Electroactive polymers (EAP)), Boston, vol 600. pp 119–130

    Google Scholar 

  33. Pelrine R et al (2001) Applications of dielectric elastomer actuators. In: Proceedings of SPIE-the international society for optical engineering (Electroactive polymer actuators and devices), San Diego, vol 4329. pp 335–349

    Google Scholar 

  34. Meijer K, Rosenthal MS, Full RJ (2001) Muscle-like actuators? A comparison between three electroactive polymers. In: Proceedings of SPIE-the international society for optical engineering (Electroactive polymer actuators and devices), San Diego, vol 4329. pp 7–15

    Google Scholar 

  35. Zhang QM et al (2002) An all-organic composite actuator material with a high dielectric constant. Nature 419(6904):284–287

    Article  Google Scholar 

  36. Wilkes CE et al (2005) PVC handbook. Hanser, Munich

    Google Scholar 

  37. Hirai T, Hirai M (2000) Electrically induced strain in polymer gels swollen with non-ionic organic solvents. In: Osada Y, DeRossi DE (eds) Polymer sensors and actuators. Springer, Berlin, pp 245–258

    Chapter  Google Scholar 

  38. Hirai T et al (2004) Bending induced by creeping of plasticized poly(vinyl chloride) gel. In: Bar-Cohen Y (ed) Electroactive polymer actuators and devices (EAPAD), SPIE proceedings (Smart structures and materials), vol 5385. pp 433–441; Masaki Y (2000) Electrical actuation of plasticized PVC. Master thesis, Shinshu University

    Google Scholar 

  39. Hirai T et al (2013) Characteristic electrical actuation of plasticized poly(vinyl chloride): various electrical functions in relation with the dielectric plasticizers. In: Vincenzini P, Skaarup S (eds) Electroactive polymers: advances in materials and devices. Trans Tech Publications, Durnten-Zurich, pp 1–6

    Google Scholar 

  40. Ogawa N et al (2009) Characteristics evaluation of PVC gel actuators. In: The 2009 IEEE/RSJ international conference on intelligent robots and systems (IROS 2009), St. Louis, 2009

    Google Scholar 

  41. Xia H, Hirai T (2010) Electric-field-induced local layer structure in plasticized PVC actuator. J Phys Chem B 114(33):10756–10762

    Article  Google Scholar 

  42. Yamano M et al (2009) A contraction type soft actuator using poly vinyl chloride gel. In: Proceedings of the 2008 I.E. international conference on robotics and biomimetics (ROBIO 2008), Bangkok, 2009

    Google Scholar 

  43. Ali M, Hirai T (2011) Characteristics of the creep-induced bending deformation of a PVC gel actuator by an electric field. J Mater Sci 46(24):7681–7688

    Article  Google Scholar 

  44. Hashimoto N (2010) Dielectric property of PVA swollen with DMSO. Graduation thesis, Hirai Laboratory, Shinshu University

    Google Scholar 

  45. Hirai T, Ali M, Xia H, Sato H, Ueki T (2012) Plasticized poly(vinyl chloride) gel as super paraelectric actuator. In: IUMRS-international conference on electronic materials (IUMRS-ICEM 2012) (The Materials Research Society of Japan (MRS-J), Pacifico Yokohama, Yokohama, 23–28 Sept 2012

    Google Scholar 

  46. Satou H, Hirai T (2013) Electromechanical and electro-optical functions of plasticized PVC with colossal dielectric constant. In: SPIE proceedings (Electroactive polymer actuators and devices (EAPAD) 2013), San Diego, vol 8687. p 868728-1-7

    Google Scholar 

  47. Sato H, Gotoh Y, Hirai T (2013) The electro-optic effect of PVA gel and PVC gel. In: 62nd SPSJ symposium on macromolecules, polymer preprints, vol 3639. The Society of Polymer Science, Kanazawa University, Kanazawa, p 2ESB13

    Google Scholar 

  48. Tanaka Y, Hirai T (2013) Mechano-electric function of plasticized poly(vinyl chloride) for impact sensor and energy harvesting. In: Polymer preprints Japan. Polymer Society Japan, Kanazawa University

    Google Scholar 

  49. Kataoka N (2009) Fabrication of lectrostatic actuator of PET film. In: Department of Materials Chemistry. Hirai Laboratory, Faculty of Textile Science and Technology, Shinshu University

    Google Scholar 

  50. Xia H, Hashimoto Y, Hirai T (2012) Electric-field-induced actuation of poly(vinyl alcohol) microfibers. J Phys Chem C 116:23236–23242

    Article  Google Scholar 

  51. Xia H, Hirai T (2013) New shedding motion, based on electroactuation force, for micro- and nanoweaving. Adv Eng Mater Commun 15:962–965

    Google Scholar 

  52. Abouraddy AF, Bayindir M, Benoit G, Hart SD, Kuriki K, Orf N, Shapira O, Sorin F, Temelkuran B, Fink Y (2007) Towards multimaterial multifunctional fibers that see, hear, sense and communicate. Nat Mater 6(5):336–347

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshihiro Hirai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Singapore

About this entry

Cite this entry

Hirai, T., Xia, H. (2015). Electric Functions of Textile Polymers. In: Tao, X. (eds) Handbook of Smart Textiles. Springer, Singapore. https://doi.org/10.1007/978-981-4451-45-1_8

Download citation

Publish with us

Policies and ethics