Skip to main content

Thermo-responsive Textiles

  • Reference work entry
  • First Online:
Handbook of Smart Textiles
  • 4883 Accesses

Abstract

Thermo-responsive polymers can switch their hydrophilic/hydrophobic state by varying the temperature below or above the lower critical solution temperature (LCST). This chapter systematically reviews the recent research on thermo-responsive polymers and their applications in the field of textiles. It mainly contains two aspects. The first aspect introduces the fundamental properties of the thermo-responsive polymers, including phase transition, transition behaviors, and factors that influence the transition behaviors. After that, the main types of thermo-responsive polymers, such as polymers bearing amide groups, polymers bearing oxygen atoms in main or side chains, and polymers bearing phosphate groups, are discussed with their special properties. Then the synthesis of the thermo-responsive polymers and the characterization of their molecular structure, molecular weight, molecular weight distribution, morphology, and thermal properties are described. The second aspect mainly focuses on the textiles with thermo-responsive polymers. Some of the most promising applications of the thermo-responsive textile, such as moisture permeability-adaptive fabric, fabrics for medicine/perfume control release, and water storage, are reported first. After that, the requirements of the thermo-responsive polymers for textiles, including adjustable LCST, soft hand, and easy binding, are discussed. Then the diverse methods to immobilize thermo-responsive polymers onto textile and characterize the properties of the modified textile are introduced. The existing challenges and strategic solutions of the thermo-responsive textiles are also briefly summarized at the end.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jeong B, Gutowska A (2002) Lessons from nature: stimuli-responsive polymers and their biomedical applications. Trends Biotechnol 20:360. doi:10.1016/S0167-7799(02)01962-5

    Article  Google Scholar 

  2. Schild HG (1992) Poly(N-isopropylacrylamide): experiment, theory and application. Prog Polym Sci 17:163–249. doi:10.1016/0079-6700(92)90023-R

    Article  Google Scholar 

  3. Lee YM, Shim JK (2003) Permeation controlled through stimuli-responsive polymer membrane prepared by plasma and radiation grafting techniques. In: Tao XM (ed) Smart fibers, fabrics and clothing. Woodhead Publishing, Abington, pp 109–123

    Google Scholar 

  4. Aseyev V, Tenhu H, Winnik FM (2011) Non-ionic thermoresponsive polymers in water. Adv Polym Sci 242:29–89. doi:10.1007/12_2010_57

    Article  Google Scholar 

  5. Grosberg AY, Khokhlov AR (1994) Statistical physics of macromolecules. AIP Press, New York

    Google Scholar 

  6. Okada Y, Tanaka F (2005) Cooperative hydration, chain collapse, and flat LCST behavior in aqueous poly(N-isopropylacrylamide) solutions. Macromolecules 38:4465–4471. doi:10.1021/ma0502497

    Article  Google Scholar 

  7. Klouda L, Mikos AG (2008) Thermoresponsive hydrogels in biomedical applications. Eur J Pharm Biopharm 68:34–45. doi:10.1016/j.ejpb.2007.02.025

    Article  Google Scholar 

  8. Tanford C (1966) Physical chemistry of macromolecules. Wiley, New York

    Google Scholar 

  9. Maeda Y, Nakamura T, Ikeda I (2002) Changes in the hydration states of poly(Nalkylacrylamide)s during their phase transitions in water observed by FTIR spectroscopy. Macromolecules 34:1391–1399. doi:10.1021/ma020945w

    Article  Google Scholar 

  10. Tiktopulo EI, Uversky VN, Lushchik VB, Klenin SI, Bychkova VE, Ptitsyn OB (1995) “Domain” coil-globule transition in homopolymers. Macromolecules 28:7519–7524. doi:10.1021/ma00126a032

    Article  Google Scholar 

  11. Furyk S, Zhang YJ, Ortiz-Acosta D, Cremer PS, Bergbreiter DE (2006) Effects of end group polarity and molecular weight on the lower critical solution temperature of poly(N-isopropylacrylamide). J Polym Sci Part A Polym Chem 44:1492–1501. doi:10.1002/pola.21256

    Article  Google Scholar 

  12. Xia Y, Burke NAD, Stover HDH (2006) End group effect on the thermal response of narrow-disperse poly(N-isopropylacrylamide) prepared by atom transfer radical polymerization. Macromolecules 39:2275–2283. doi:10.1021/ma0519617

    Article  Google Scholar 

  13. Nuopponen M, Kalliomäki K, Laukkanen A, Hietala S, Tenhu H (2008) A-B-A Stereoblock copolymers of N-Isopropylacrylamide. J Polym Sci Part A Polym Chem 46:38–46. doi:10.1002/pola.22355

    Article  Google Scholar 

  14. Winnik FM, Ringsdorf H, Venzmer J (1990) Methanol-water as a co-nonsolvent system for poly(N-isopropylacrylamide). Macromolecules 23:2415–2416. doi:10.1021/ma00210a048

    Article  Google Scholar 

  15. Hellweg T, Dewhurst CD, Eimer W, Kratz K (2004) PNIPAAm-co-polystyrene core-shell microgels: structure, swelling behavior, and crystallization. Langmuir 20:4330–4335. doi:10.1021/la0354786

    Article  Google Scholar 

  16. Feil H, Bae YH, Feijen J, Kim SW (1993) Effect of comonomer hydrophilicity and ionization on the lower critical solution temperature of N-isopropylacrylamide copolymers. Macromolecules 26:2496–2500. doi:10.1021/ma00062a016

    Article  Google Scholar 

  17. Winnik FM, Davidson AR, Hamer GK, Kitano H (1992) Amphiphilic poly(N-isopropylacrylamides) prepared by using a lipophilic radical initiator – synthesis and solution properties in water. Macromolecules 25:1876–1880. doi:10.1021/ma00033a006

    Article  Google Scholar 

  18. Molyneux P (1985) Water-soluble synthetic polymers: properties and behavior. CRC, Boca Raton

    Google Scholar 

  19. Lutz JF (2008) Polymerization of oligo(ethylene glycol) (Meth)Acrylates: toward new generations of smart biocompatible materials. J Polym Sci Part A Polym Chem 46:3459–3470

    Article  Google Scholar 

  20. Yuan YY, Liu XQ, Wang YC, Wang J (2009) Gold nanoparticles stabilized by thermosensitive diblock copolymers of poly(ethylene glycol) and polyphosphoester. Langmuir 25:10298–10304. doi:10.1021/la901120x

    Article  Google Scholar 

  21. Chang JH, Kim KJ, Shin YK (2004) Sustained drug release on temperature-responsive polymer hybrid nanoporous silica composites. Bull Korean Chem Soc 25:1257–1260. doi:10.5012/bkcs.2004.25.8.1257

    Article  Google Scholar 

  22. Chern CS (2006) Emulsion polymerization mechanisms and kinetics. Prog Polym Sci 31:443–486. doi:10.1016/j.progpolymsci.2006.02.001

    Article  Google Scholar 

  23. Suzuki D, Yamagata T, Murai M (2013) Multilayered composite microgels synthesized by surfactant-free seeded polymerization. Langmuir 29:10579–10585. doi:10.1021/la4025537

    Article  Google Scholar 

  24. Alexandridis P, Hatton TA (1995) Poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymer surfactants in aqueous solutions and at interfaces: thermodynamics, structure, dynamics, and modeling. Colloids Surf A Physicochem Eng Asp 96:1–46. doi:10.1016/0927-7757(94)03028-X

    Article  Google Scholar 

  25. Andre X, Zhang M, Muller AH (2005) Thermo- and pH-responsive micelles of poly(acrylic acid)-block-poly(N, N-diethylacrylamide). Macromol Rapid Commun 26:558–563. doi:10.1002/marc.200400510

    Article  Google Scholar 

  26. Dai S, Ravi P, Tam KC (2009) Thermo- and photo-responsive polymeric systems. Soft Matter 5:2513–2533. doi:10.1039/B820044K

    Article  Google Scholar 

  27. Qu T, Wang A, Yuan J, Shi J, Gao Q (2009) Preparation and characterization of thermo-responsive amphiphilic triblock copolymer and its self-assembled micelle for controlled drug release. Colloid Surf B 72:94–100. doi:10.1016/j.colsurfb.2009.03.020

    Article  Google Scholar 

  28. Chu LY, Park SH, Yamaguchi T, Nakao SI (2001) Preparation of thermo-responsive core-shell microcapsules with a porous membrane and poly(N-isopropylacrylamide) gates. J Membr Sci 192:27–39. doi:10.1016/S0376-7388(01)00464-1

    Article  Google Scholar 

  29. Topp MDC, Dijkstra PJ, Talsma H, Feijen J (1997) Thermosensitive micelle-forming block copolymers of poly(ethylene glycol) and poly(N-isopropylacrylamide). Macromolecules 30:8518–8520. doi:10.1021/ma9710803

    Article  Google Scholar 

  30. Liang L, Shi M, Viswanathan VV, Peurrung LM, Young JS (2000) Temperature-sensitive polypropylene membranes prepared by plasma polymerization. J Membr Sci 177:97–108. doi:10.1016/S0376-7388(00)00453-1

    Article  Google Scholar 

  31. Serra M (2002) Adaptable skin-hydrogel gives wetsuit protection. Smart Mater Bull 8:7–8. doi:10.1016/S1471-3918(02)00823-7

    Google Scholar 

  32. Cornelius VJ, Majcen N, Snowden MJ, Mitchell JC, Voncina B Preparation of smart wound dressing based on colloidal microgels and textile fibers. Proc SPIE 6413, Smart Materials IV, 64130X. doi:10.1117/12.712573

    Google Scholar 

  33. Hu JL, Meng H, Li GQ, Ibekwe SI (2012) A review of stimuli-responsive polymers for smart textile applications. Smart Mater Struct 21:053001. doi:10.1088/0964-1726/21/5/053001

    Article  Google Scholar 

  34. Yang H, Zhu H, Hendrix MM, Lousberg NJ, de With G, Esteves ACC, Xin JH (2013) Temperature-triggered collection and release of water from fogs by a sponge-like cotton fabric. Adv Mater 25:1150–1154. doi:10.1002/adma.201204278

    Article  Google Scholar 

  35. Xue B, Gao L, Hou Y, Hou ZW, Jiang L (2013) Temperature controlled water/oil wettability of a surface fabricated by a block copolymer: application as a dual water/oil on-off switch. Adv Mater 25:273–277. doi:10.1002/adma.201202799

    Article  Google Scholar 

  36. Zhang CH, Yang FL, Wang WJ, Chen B (2008) Preparation and characterization of hydrophilic modification of polypropylene non-woven fabric by dip-coating PVA (polyvinyl alcohol). Sep Purif Technol 61:276–286. doi:10.1016/j.seppur.2007.10.019

    Article  Google Scholar 

  37. Li R, Ye L, Mai YW (1997) Application of plasma technologies in fibre-reinforced polymer composites: a review of recent developments. Compos Part A 28A:73–86. doi:10.1016/s1359-835X(96)00097-8

    Article  Google Scholar 

  38. Save NS, Jassal M, Agrawal AK (2005) Smart breathable fabric. J Ind Text 34:139–155. doi:10.1177/1528083705047905

    Article  Google Scholar 

  39. Yang H, Esteves ACC, Zhu H, Wang D, Xin JH (2012) In-situ study of the structure and dynamics of thermo-responsive PNIPAAm grafted on a cotton fabric. Polymer 53:3577–3596. doi:10.1016/j.polymer.2012.05.053

    Article  Google Scholar 

  40. Chen KS, Tsai JC, Chou CW, Yang MR, Yang JM (2002) Effects of additives on the photo-induced grafting polymerization of N-isopropylacrylamide gel onto PET film and PP nonwoven fabric surface. Mater Sci Eng C 20:203–208. doi:10.1016/S0928-4931(02)00034-6

    Article  Google Scholar 

  41. Sun TL, Wang GJ, Feng L, Liu BQ, Ma YM, Jiang L, Zhu DB (2004) Reversible switching between superhydrophilicity and superhydrophobicity. Angew Chem Int Ed 43:357–360. doi:10.1002/anie.200352565

    Article  Google Scholar 

  42. Lavrič PK, Tomšič B, Simončič B, Warmoeskerken MMCG, Jocić D (2012) Functionalization of cotton with poly-NiPAAm/chitosan microgel: Part II. Stimuli-responsive liquid management properties. Cellulose 19:273–287. doi:10.1007/s10570-011-9635-7

    Article  Google Scholar 

  43. Glampedaki P (2010) Tunable wettability of polyester fabrics functionalized by chitosan/poly (N-isopropylacrylamide-co-acrylic acid) microgels. In: Dragan J (ed) Surface modification systems for creating stimuli responsiveness of textiles. University of Twente, Enschede, pp 61–76

    Google Scholar 

  44. Chung H (2004) Thermal properties and physiological responses of vapor-permeable water repellent fabrics treated with microcapsule-containing PCMs. Text Res J 74:571–575. doi:10.1177/004051750407400702

    Article  Google Scholar 

  45. Hu JL, Liu BH, Liu WG (2007) Temperature/pH sensitive N-isopropylacrylamide/ polyurethane copolymer hydrogel-grafted fabrics. Text Res J 76:853–860. doi:10.1177/0040517507074625

    Article  Google Scholar 

  46. Youngjoo N, Behnam P (1995) Assessing wrinkling using image analysis and replicate standards. Text Res J 65:149–157. doi:10.1177/004051759506500303

    Article  Google Scholar 

  47. Stuart MAC, Huck WTS, Genzer J, Muller M, Ober C, Stamm M, Sukhorukov GB, Szleifer I, Tsukruk VV, Urban M, Winnik FM, Zauscher S, Luzinov I, Minko S (2010) Emerging applications of stimuli-responsive polymer materials. Nat Mater 9:101–113. doi:10.1038/nmat2614

    Article  Google Scholar 

  48. Lutz JF (2011) Thermo-switchable materials prepared using the OEGMA-platform. Adv Mater 23:2237–2243. doi:10.1002/adma.201100597

    Article  Google Scholar 

  49. Jocić D Functional finishing of textiles with responsive polymeric systems. pp 37–59

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiping Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Singapore

About this entry

Cite this entry

Wang, J., Zhong, Q., Wu, J., Chen, T. (2015). Thermo-responsive Textiles. In: Tao, X. (eds) Handbook of Smart Textiles. Springer, Singapore. https://doi.org/10.1007/978-981-4451-45-1_5

Download citation

Publish with us

Policies and ethics