Skip to main content

Applications of Terahertz Wave Technology in Smart Textiles

  • Reference work entry
  • First Online:
  • 4721 Accesses

Abstract

The terahertz radiation bridges the gap between microwave and infrared light, which consists of electromagnetic waves with frequencies ranging from 100 GHz to 1,000 GHz. There are approximately one-half of the total luminosity and most of the photons emitted since the Big Bang fall into the terahertz frequency region. Terahertz spectroscopy and imaging are two important techniques for the applications to textiles, which are described in this chapter. Some terahertz spectroscopy experimental systems were presented, such as time-domain spectroscopy-based terahertz pulsed system and backward-wave oscillator-based continuous-wave terahertz system. Several applications of the terahertz spectroscopy technique were reviewed to textile identification and sensing, such as textile fibers, textile materials, and wool textiles. Terahertz imaging of object behind textile barriers was demonstrated and the images were segmented for target detection. Terahertz imaging applications to textiles were also reviewed, such as measuring textile water content, detecting target behind textile barriers, and testing composites nondestructively.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Grischkowsky DR, Mittleman D (2003) Introduction. In: Mittleman D (ed) Sensing with terahertz radiation. Springer, Berlin, pp 1–7

    Chapter  Google Scholar 

  2. Rao L, Yang DX, Zhang L et al (2012) Design and experimental verification of terahertz wideband filter based on double-layered metal hole arrays. Appl Optics 51:912–916

    Article  Google Scholar 

  3. DragomanD DM (2004) Terahertz fields and applications. Prog Quantum Electron 28:1–66

    Article  Google Scholar 

  4. Sizov F, Rogalski A (2010) THz detectors. Prog Quantum Electron 34:278–347

    Article  Google Scholar 

  5. Siegel PH (2002) Terahertz technology. IEEE Trans Microwave Theory Tech 50:910–928

    Article  Google Scholar 

  6. Kulesa C (2011) Terahertz spectroscopy for astronomy: from comets to cosmology. IEEE Trans Terahertz SciTechnol 1:232–240

    Article  Google Scholar 

  7. Song H, Nagatsuma T (2011) Present and future of terahertz communications. IEEE Trans Terahertz Sci Technol 1:256–263

    Article  Google Scholar 

  8. Koenig S, Lopez-Diaz D, Antes J et al (2013) Wireless sub-THz communication system with high data rate. Nat Photonics 7:977–981

    Article  Google Scholar 

  9. Pawar AY, Sonawane DD, Erande KB et al (2013) Terahertz technology and its applications. Drug Invent Today 5:157–163

    Article  Google Scholar 

  10. International Telecommunications Union (2013) Attenuation by atmospheric gases. Radiocommunication sector of ITU, Recommendation ITU-R P.676-10

    Google Scholar 

  11. Haddad J, Bousquet B, Canioni L et al (2013) Review in terahertz spectral analysis. Trends Anal Chem 44:98–105

    Article  Google Scholar 

  12. Nagashima T, Tani M, Hangyo M (2013) Polarization-sensitive THz-TDS and its application to anisotropy sensing. J Infrared Millimeter Terahertz Waves 34:740–775

    Article  Google Scholar 

  13. Nagashima T, Hangyo M (2001) Measurement of complex optical constants of a highly doped Si wafer using terahertz ellipsometry. Appl Phys Lett 79:3917–3919

    Article  Google Scholar 

  14. Amenabar I, Lopez F, Mendikute A (2013) In introductory review to THz non-destructive testing of composite mater. J Infrared Millimeter Terahertz Waves 34:152–169

    Article  Google Scholar 

  15. Yan C, Yang B, Yu Z (2013) Terahertz time domain spectroscopy for the identification of two cellulosic fibers with similar chemical composition. Anal Lett 46:946–958

    Article  Google Scholar 

  16. Molloy J, Naftaly M (2014) Wool textile identification by terahertz spectroscopy. J Text Inst 105:794–798

    Article  Google Scholar 

  17. Xia S, Yang DX, Li T et al (2014) Role of surface plasmon resonant modes in anomalous terahertz transmission through double-layer metal loop arrays. Opt Lett 39:1270–1273

    Article  Google Scholar 

  18. Gorshunov B, Volkov A, Spektor I et al (2005) Terahertz BWO-spectroscopy. Int J Infrared Millimeter Waves 26:1217–1240

    Article  Google Scholar 

  19. Rao L, Yang DX, Hong Z (2012) Guiding terahertz wave within a line defect of photonic crystal slab. Microw Opt Technol Lett 54:2856–2858

    Article  Google Scholar 

  20. Naftaly M, Molloy JF, Lanskii GV et al (2013) Terahertz time-domain spectroscopy for textile identification. Appl Optics 52:4433–4437

    Article  Google Scholar 

  21. Dunayevskiy I, Bortnik B, Geary K et al (2007) Millimeter- and submillimeter-wave characterization of various fabrics. Appl Optics 46:6161–6165

    Article  Google Scholar 

  22. Bjarnason JE, Chan TLJ, Lee AWM et al (2004) Millimeter-wave, terahertz, and mid-infrared transmission through common clothing. Appl Phys Lett 85:519–521

    Article  Google Scholar 

  23. Hérault É, Hofman M, Garet F et al (2013) Observation of terahertz beam diffraction by fabrics. Opt Lett 38:2708–2710

    Article  Google Scholar 

  24. Fletcher JR, Swift GP, Dai DC et al (2007) Propagation of terahertz radiation through random structures: an alternative theoretical approach and experimental validation. J Appl Phys 101:013102

    Article  Google Scholar 

  25. Ghebrebrhan M, Aranda FJ, Ziegler DP et al (2014) Tunable millimeter and sub-millimeter spectral response of textile metamaterial via resonant states. Opt Express 22:2853–2859

    Article  Google Scholar 

  26. Tao H, Amsden JJ, Strikwerda AC et al (2010) Metamaterial silk composites at terahertz frequencies. Adv Mater 22:3527–3531

    Article  Google Scholar 

  27. Li J, Shah CM, Withayachumnankul W et al (2013) Flexible terahertz metamaterials for dual-axis strain sensing. Opt Lett 38:2104–2106

    Article  Google Scholar 

  28. Wietzke S, Jansen C, Reuter M et al (2011) Terahertz spectroscopy on polymers: a review of morphological studies. J Mol Struct 1006:41–51

    Article  Google Scholar 

  29. Suzuki H, Ishii S, Sato H et al (2013) Brill transition of nylon-6 characterized by low-frequency vibration through terahertz absorption spectroscopy. Chem Phys Lett 21:36–39

    Article  Google Scholar 

  30. Yamashita M, Usami M, Fukushima K et al (2005) Component spatial pattern analysis of chemicals by use of two-dimensional electro-optic terahertz imaging. Appl Optics 44:5198–5201

    Article  Google Scholar 

  31. Knoll B, Keilmann F (1999) Near-field probing of vibrational absorption for chemical microscopy. Nature 399:134–137

    Article  Google Scholar 

  32. Withayachumnankul W, Png GM, Yin X (2007) T-ray sensing and imaging. Proc IEEE 95:1528–1558

    Article  Google Scholar 

  33. Chen HT, Kersting R, Cho GC (2003) Terahertz imaging with nanometer resolution. Appl Phys Lett 83:3009–3011

    Article  Google Scholar 

  34. Son JH (2013) Principle and applications of terahertz molecular imaging. Nanotechnology 24:214001

    Article  Google Scholar 

  35. Oh SJ, Kang JY, Maeng I et al (2009) Nanoparticle-enabled terahertz imaging for cancer diagnosis. Opt Express 17:3469–3475

    Article  Google Scholar 

  36. Bogue R (2009) Terahertz imaging: a report on progress. Sens Rev 29:6–12

    Article  Google Scholar 

  37. Svetlitza A, Slavenko AM, Blank T et al (2014) THz measurements and calibration based on a blackbody source. IEEE Trans Terahertz Sci Technol 4:347–359

    Article  Google Scholar 

  38. Jewariya M, Abraham E, Kitaguchi T et al (2013) Fast three-dimensional terahertz computed tomography using real-time line projection of intense terahertz pulse. Opt Express 21:2423–2433

    Article  Google Scholar 

  39. Guillet JP, Recur B, Frederique L et al (2014) Review of terahertz tomography techniques. J Infrared Millim Terahertz Waves 35:382–411

    Article  Google Scholar 

  40. Wang S, Zhang XC (2004) Pulsed terahertz tomography. J Phys D Appl Phys 37:R1–R36

    Article  Google Scholar 

  41. Redo-Sanchez A, Laman N, Schulkin B et al (2013) Review of terahertz technology readiness assessment and applications. J Infrared Millim Terahertz Waves 34:500–518

    Article  Google Scholar 

  42. Fukunaga K, Cortes E, Cosentin A et al (2011) Investigating the use of terahertz pulsed time domain reflection imaging for the study of fabric layers of an Egyptian mummy. J Eur Opt Soc-Rapid Publ 6:11040

    Article  Google Scholar 

  43. Joerdens C, Wietzke S, Scheller M et al (2010) Investigation of the water absorption in polyamide and wood plastic composite by terahertz time-domain spectroscopy. Polym Test 29:209–215

    Article  Google Scholar 

  44. Zhang HB, Mitobe K, Yoshimura N (2008) Application of terahertz imaging to water content measurement. Jpn J Appl Phys 47:8065–8070

    Article  Google Scholar 

  45. Cleary D (2002) Sensing: brainstorming their way to an imaging revolution. Science 297:761–763

    Article  Google Scholar 

  46. Cooper KB, Dengler RJ, Llombart N et al (2011) THz imaging radar for standoff personnel screening. IEEE Trans Terahertz Sci Technol 1:169–182

    Article  Google Scholar 

  47. Chen JC, Kaushik S (2007) Terahertz interferometer that senses vibrations behind barriers. IEEE Photonics Technol Lett 19:486–488

    Article  Google Scholar 

  48. Chan WL, Deibel J, Mittleman DM (2007) Imaging with terahertz radiation. Rep Prog Phys 70:1325–1379

    Article  Google Scholar 

  49. Shen XL, Dietlein CR, Grossman E et al (2008) Detection and segmentation of concealed objects in terahertz images. IEEE Trans Image Process 17:2465–2475

    Article  Google Scholar 

  50. Stoik C, Bohn M, Blackshire J (2010) Nondestructive evaluation of aircraft composites using reflective terahertz time domain spectroscopy. NDT&E Int 43:106–115

    Article  Google Scholar 

  51. Palka N, Miedzinska D (2014) Detailed non-destructive evaluation of UHMWPE composites in the terahertz range. Opt Quant Electron 46:515–525

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongxiao Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Singapore

About this entry

Cite this entry

Yang, D. (2015). Applications of Terahertz Wave Technology in Smart Textiles. In: Tao, X. (eds) Handbook of Smart Textiles. Springer, Singapore. https://doi.org/10.1007/978-981-4451-45-1_41

Download citation

Publish with us

Policies and ethics