Skip to main content

Textile Antenna Systems: Design, Fabrication, and Characterization

  • Reference work entry
  • First Online:
Handbook of Smart Textiles

Abstract

Textile antennas are essential components in smart fabrics and interactive textile systems that implement sensing, localization, and wireless communication functionality while being unobtrusively and comfortably integrated inside garments. The implementation of such antennas in textile materials first requires dedicated material characterization techniques together with suitable fabrication procedures. Moreover, to ensure stable characteristics in proximity of the human body, a designer must also carefully select the right antenna topology. Subsequently, the antenna may be optimized to satisfy the requirements at hand, including some additional margins to accommodate adverse effects, such as bending, changing environmental conditions, and body proximity. To make optimal use of the area consumed by the antenna, active electronic circuitry may be integrated directly onto the antenna feed plane, while energy harvesters can be positioned on top of the radiating patch. Moreover, the large area available in garments can be exploited to deploy multiple antennas, realizing diversity gain to combat fading and body shadowing. The methods proposed in this chapter leverage the development of highly efficient and robust body-centric communication systems for healthcare and rescue workers and military personnel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hertleer C, Tronquo A, Rogier H, Van Langenhove L (2008) The use of textile materials to design wearable microstrip patch antennas. Text Res J 78(8):651–658

    Article  Google Scholar 

  2. Salvado R, Loss C, Gonçalves R, Pinho P (2012) Textile materials for the design of wearable antennas: a survey. Sensors 12(11):15841–15857

    Article  Google Scholar 

  3. Scarpello ML, Kazani I, Hertleer C, Rogier H, Vande Ginste D (2012) Stability and efficiency of screen-printed wearable and washable antennas. IEEE Antennas Wirel Propag Lett 11:838–841

    Article  Google Scholar 

  4. Kellomäki T, Virkki J, Merilampi S, Ukkonen L (2012) Towards washable wearable antennas: a comparison of coating materials for screen-printed textile-based UHF RFID tags. Int J Antennas Propag. Article ID 476570, 11 pp

    Google Scholar 

  5. Hertleer C, Rogier H, Vallozzi L, Van Langenhove L (2009) A textile antenna for off-body communication integrated into protective clothing for firefighters. IEEE Trans Antennas Propag 57(4):919–925

    Article  Google Scholar 

  6. Hertleer C, Van Laere A, Rogier H, Van Langenhove L (2010) Influence of relative humidity on textile antenna performance. Text Res J 2:177–183

    Article  Google Scholar 

  7. Wang Z, Zhang L, Volakis J (2013) Textile antennas for wearable radio frequency applications. Text Light Ind Sci Technol 2(3):105–112

    Google Scholar 

  8. Wang J, Zhang L, Bayram Y, Volakis J (2012) Embroidered conductive fibers on polymer composite for conformal antennas. IEEE Trans Antennas Propag 60(9):4141–4147

    Article  Google Scholar 

  9. Kaufmann T, Fumeaux I, Fumeaux C (2013) Comparison of fabric and embroidered dipole antennas. In: Antennas and propagation (EuCAP), 2013 7th European conference, Gothenburg, Denmark, pp 3252–3255

    Google Scholar 

  10. Chauraya A, Whittow W, Vardaxoglou J, Li Y, Torah R, Yang K, Beeby S, Tudor J (2013) Inkjet printed dipole antennas on textiles for wearable communications. IET Microwaves Antennas Propag 7(9):760–767

    Article  Google Scholar 

  11. Whittow W, Chauraya A, Vardaxoglou J, Yi L, Torah R, Kai Y, Beeby S, Tudor J (2014) Inkjet-printed microstrip patch antennas realized on textile for wearable applications. IEEE Antennas Wirel Propag Lett 13:71–74

    Article  Google Scholar 

  12. Kazani I, Scarpello ML, Hertleer C, Rogier H, De Mey G, Guxho G, Van Langenhove L (2012) Washable screen printed textile antennas, smart and interactive textiles, advances in science and technology. In: Symposium on smart and interactive textiles of CIMTEC/4th, international conference on smart materials, structures and systems, vol 80, Montecatini Terme, 10–14 June 2012, pp 118–122

    Google Scholar 

  13. Kaufmann T, Fumeaux C (2013) Wearable textile half-mode substrate-integrated cavity antenna using embroidered vias. IEEE Antennas Wirel Propag Lett 12:805–808

    Article  Google Scholar 

  14. Moro R, Agneessens S, Rogier H, Bozzi M (2012) Wearable textile antenna in substrate integrated waveguide technology. IET Electron Lett 48(16):985–987

    Article  Google Scholar 

  15. Agneessens S, Rogier H (2014) Compact half diamond dual-band textile HMSIW on body antenna. IEEE Trans Antennas Propag 62(4):2374–2381

    Article  Google Scholar 

  16. Declercq F, Rogier H, Hertleer C (2008) Permittivity and loss tangent characterization for garment antennas based on a new matrix-pencil two-line method. IEEE Trans Antennas Propag 56(8):2548–2554

    Article  Google Scholar 

  17. Declercq F, Couckuyt I, Rogier H, Dhaene T (2013) Environmental high frequency characterization of fabrics based on a novel surrogate modelling antenna technique. IEEE Trans Antennas Propag 61(10):5200–5213

    Article  Google Scholar 

  18. Bal K, Kothari VK (2009) Measurement of dielectric properties of textile materials and their applications. Indian J Fibre Text Res 34:191–199

    Google Scholar 

  19. Bal K, Kothari VK (2010) Permittivity of woven fabrics: a comparison of dielectric formulas for air-fiber mixture. IEEE Trans Dielectr Electr Insul 17(3):881–889

    Article  Google Scholar 

  20. Lilja J, Salonen P (2009) Textile material characterization for SoftWear antenna. In: Proceedings 28th IEEE conference on military communications, Piscataway, pp 628–634

    Google Scholar 

  21. Bouttout F, Benabdelaziz F, Benghalia A, Khedrouche D, Fortaki T (1999) Uniaxially anisotropic effects on resonance of rectangular microstrip patch antenna. IEE Electron Lett 35(4):255–256

    Article  Google Scholar 

  22. Sankaralingam S, Gupta B (2010) Determination of dielectric constant of fabric materials and their use as substrates for design and development of antennas for wearable applications. IEEE Trans Instrum Meas 59(12):3122–3130

    Article  Google Scholar 

  23. Lilja J, Salonen P, de Maagt P (2009) Environmental characterization of industrial fabric for SoftWear antenna. In: Proceedings IEEE Antennas and Propagation Society international symposium, Charleston, SC, USA, pp 1–4

    Google Scholar 

  24. Lilja J, Salonen P, Kaija T, de Maagt P (2012) Design and manufacturing of robust textile antennas for harsh environments. IEEE Trans Antennas Propag 60(9):4130–4140

    Article  Google Scholar 

  25. Sanjari H, Merati A, Varkiani S, Tavakoli A (2014) A study on the effect of compressive strain on the resonance frequency of rectangular textile patch antenna: elastic and isotropic model. J Text Inst 105(2):156–162

    Article  Google Scholar 

  26. Virkki J, Björninen T, Kellomäki T, Merilampi S, Shafiq I, Ukkonen L, Sydänheimo L, Chan YC (2014) Reliability of washable wearable screen printed UHF RFID tags. Microelectron Reliab 54(4):840–846

    Article  Google Scholar 

  27. Shaw RK, Long BR, Werner DH, Gavrin A (2007) The characterization of conductive textile materials intended for radio frequency applications. IEEE Antennas Propag Mag 49(3):28–40

    Article  Google Scholar 

  28. Yuehui O, Chappell W (2008) High frequency properties of electro-textiles for wearable antenna applications. IEEE Trans Antennas Propag 56(2):381–389

    Article  Google Scholar 

  29. Lilja J, Salonen P, de Maagt P (2009) Characterization of conductive textile materials for SoftWear antenna. In: Proceedings IEEE Antennas and Propagation Society international symposium, Charleston, SC, USA, pp 1–4

    Google Scholar 

  30. Locher I, Klemm M, Kirstein T, Tröster G (2006) Design and characterization of purely textile patch antennas. IEEE Trans Adv Pack 29:777–788

    Article  Google Scholar 

  31. King HE, Wong JL (1977) Effects of a human body on a dipole antenna at 450 and 900 MHz. IEEE Trans Antennas Propag 25(3):376–379

    Article  Google Scholar 

  32. Kellomaki T, Heikkinen J, Kivikoski M (2006) Wearable antennas for FM reception. In: EuCAP 2006 European conference on antennas and propagation, Nice, pp 1–6

    Google Scholar 

  33. Winterhalter C, Teverovsky J, Wilson P, Slade J, Horowitz W, Tierney E, Sharma V (2005) Development of electronic textiles to support networks communications, and medical applications in future U.S. Military protective clothing systems. IEEE Trans Inf Technol Biomed 9(3):402–406

    Article  Google Scholar 

  34. Roh J-S, Chi Y-S, Lee J-H, Tak Y, Nam S, Kang TJ (2010) Embroidered wearable multiresonant folded dipole antenna for FM reception. IEEE Antennas Wirel Propag Lett 9:803–806

    Article  Google Scholar 

  35. Psychoudakis D, Volakis JL (2009) Conformal asymmetric meandered flare (AMF) antenna for body-worn applications. IEEE Antennas Wirel Propag Lett 8:931–934

    Article  Google Scholar 

  36. Lee GY, Psychoudakis D, Chen CC, Volakis JL (2011) Omnidirectional vest-mounted body-worn antenna system for UHF operation. IEEE Antennas Wirel Propag Lett 10:581–583

    Article  Google Scholar 

  37. Paul DL, Giddens H, Paterson MG, Hilton GS, McGeehan JP (2013) Impact of body and clothing on a wearable textile dual band antenna at digital television and wireless communications bands. IEEE Trans Antennas Propag 61(4):2188–2194

    Article  Google Scholar 

  38. Klemm M, Troester G (2006) Textile UWB antennas for wireless body area networks. IEEE Trans Antennas Propag 54(11):3192–3197

    Article  Google Scholar 

  39. Lui K, Murphy O, Toumazou C (2013) A wearable wideband circularly polarized textile antenna for effective power transmission on a wirelessly-powered sensor platform. IEEE Trans Antennas Propag 61(7):3873–3876

    Article  Google Scholar 

  40. Zhu S, Langley R (2009) Dual-band wearable textile antenna on an EBG substrate. IEEE Trans Antennas Propag 57(4):926–935

    Article  Google Scholar 

  41. Raad HR, Abbosh AI, Al-Rizzo HM, Rucker DG (2013) Flexible and compact AMC based antenna for telemedicine applications. IEEE Trans Antennas Propag 61(2):524–531

    Article  Google Scholar 

  42. Soh PJ, Vandenbosch GAE, Ooi SL, Rais NHM (2012) Design of a broadband all-textile slotted PIFA. IEEE Trans Antennas Propag 60(1):379–384

    Article  Google Scholar 

  43. Boeykens F, Rogier H, Vallozzi L (2014) An efficient technique based on polynomial chaos to model the uncertainty in the resonance frequency of textile antennas due to bending. IEEE Trans Antennas Propag 62(3):1253–1260

    Google Scholar 

  44. Lemey S, Declercq F, Rogier H (2014) Dual-band substrate integrated waveguide textile antenna with integrated solar harvester. IEEE Antennas Wirel Propag Lett 13:269–272

    Article  Google Scholar 

  45. Samal P, Soh P, Vandenbosch G (2014) UWB all-textile antenna with full ground plane for off-body WBAN communications. IEEE Trans Antennas Propag 62(1):102–108

    Article  Google Scholar 

  46. Grimm M, Manteuffel D (2014) Norton surface waves in the scope of body area networks. IEEE Trans Antennas Propag 62(5):2616–2623

    Article  Google Scholar 

  47. Conway GA, Scanlon WG (2009) Antennas for over-body-surface communication at 2.45 GHz. IEEE Trans Antennas Propag 57(4):844–855

    Article  Google Scholar 

  48. Akhoondzadeh-Asl L, Nechayev Y, Hall PS, Constantinou CC (2013) Parasitic array antenna with enhanced surface wave launching for on-body communications. IEEE Trans Antennas Propag 61(4):1976–1985

    Article  Google Scholar 

  49. Chahat N, Zhadobov M, Le Coq L, Sauleau R (2012) Wearable endfire textile antenna for on-body communications at 60 GHz. IEEE Antennas Wirel Propag Lett 11:799–802

    Article  Google Scholar 

  50. Salonen P, Sydänheimo L, Keskilammi M, Kivikoski M (1999) A small planar inverted-F antenna for wearable applications. In: Third international symposium on wearable computers, San Francisco, CA, USA, pp 95–100

    Google Scholar 

  51. Massey PJ (2001) Mobile phone fabric antenna integrated within clothing. In: Eleventh international conference on antennas and propagation IEE conference publication N° 480, Manchester, pp 344–347

    Google Scholar 

  52. Salonen P, Sydädnheimo L (2002) Development of an S-band flexible antenna for smart clothing. IEEE Antennas Propag Soc Int Symp 3:6–9, San Antonio, TX, USA

    Google Scholar 

  53. Salonen P, Hurme L (2003) A novel fabric WLAN antenna for wearable applications. IEEE Antennas Propag Soc Int Symp 2:700–703, Columbus, OH, USA

    Google Scholar 

  54. Salonen P, Rahmat-Samii Y, Kivikoski M (2004) Wearable antennas in the vicinity of human body. In: IEEE antennas and propagation society international symposium, Monterey, pp 467–470

    Google Scholar 

  55. Salonen P, Rahmat-Samii Y, Hurme H, Kivikoski M (2004) Effect of conductive material on wearable antenna performance: a case study of WLAN antennas. In: IEEE antennas and propagation society international Symposium, vol 1, Monterey, pp 463–466

    Google Scholar 

  56. Tronquo A, Rogier H, Hertleer C, Van Langenhove L (2006) A robust planar textile antenna for wireless body LANs operating in the 2.45-GHz ISM band. IEE Electron Lett 42(3):142–143

    Article  Google Scholar 

  57. Locher I, Klemm M, Kirstein T, Tröster G (2006) Design and characterization of purely textile patch antennas. IEEE Trans Adv Packag 29(4):777–788

    Article  Google Scholar 

  58. Kellomäkki T, Heikkinen JJ, Kivikoski MA (2006) Effects of bending GPS antennas. In: Proceedings of Asia-Pacific microwave conference, Yokohama, Japan, pp 1–4

    Google Scholar 

  59. Hertleer C, Tronquo A, Rogier H, Van Langenhove L (2007) An aperture-coupled patch antenna for integration into wearable textile systems. IEEE Antennas Wirel Propag Lett 6:392–395

    Article  Google Scholar 

  60. Vallozzi L, Rogier H, Hertleer C (2008) Dual polarized textile patch antenna for integration into protective garments. IEEE Antennas Wirel Propag Lett 7:440–443

    Article  Google Scholar 

  61. Vallozzi L, Rogier H, Hertleer C (2009) Design of a protective garment GPS antenna. Microw Opt Technol Lett 51:1504–1508

    Article  Google Scholar 

  62. Bai Q, Langley R (2009) Crumpled textile antennas. IEE Electron Lett 45(9):436–438

    Article  Google Scholar 

  63. Kennedy TF, Fink PW, Chu AW, Champagn NJ, Lin GY, Khayat M (2009) A body-worn E-textile antennas : the good, the low-mass, and the conformal. IEEE Trans Antennas Propag 57(4):910–918

    Article  Google Scholar 

  64. Salonen P, Keskilammi M (2008) SoftWear antenna. In: Military communications conference, San Diego, CA, pp 1–6

    Google Scholar 

  65. Salonen P, Keskilammi M, Rahmat-Samii Y (2008) Textile antennas: effect of antenna bending on radiation pattern and efficiency. In: IEEE antennas and propagation society international symposium, San Diego, pp 1–4

    Google Scholar 

  66. Declercq F, Rogier H (2010) Active integrated wearable textile antenna with optimized noise characteristics. IEEE Trans Antennas Propag 58:3050–3054

    Article  Google Scholar 

  67. Dierck A, Agneessens S, Declercq F, Spinnewyn B, Stockman G, Van Torre P, Vallozzi L, Vande Ginste D, Vanfleteren J, Vervust T, Rogier H (2014) Active textile antennas in professional garments for sensing, localisation and communication. Int J Microw Wirel Technol 6:331–341

    Article  Google Scholar 

  68. Vanveerdeghem P, Van Torre P, Stevens C, Knockaert J, Rogier H (2014) Flexible dual-diversity wearable wireless node integrated on a dual-polarised textile patch antenna. IET Sci Meas Technol 8(6):452–458, doi:10.1049/iet-smt.2013.0224, Print ISSN 1751-8822, Online ISSN 1751–8830

    Google Scholar 

  69. Van Torre P, Vallozzi L, Rogier H, Moeneclaey M, Hertleer C, Verhaevert J (2011) Indoor off-body wireless MIMO communication with dual polarized textile antennas. IEEE Trans Antennas Propag 59(2):631–642

    Article  Google Scholar 

  70. Van Torre P, Scarpello ML, Vallozzi L, Rogier H, Moeneclaey M, Vande Ginste D, Verhaevert J (2012) Indoor off-body wireless communication: static beamforming versus space-time coding. Int J Antennas Propag. Article ID 413683, 13 pp. doi:10.1155/2012/413683

    Google Scholar 

  71. Van Torre P, Vallozzi L, Rogier H, Moeneclaey M, Verhaevert J (2010) Channel characterization and robust tracking for diversity reception over time-variant off-body wireless communication channels. EURASIP J Adv Signal Process (Special Issue on Robust Processing of Nonstationary Signals). Article ID 978085, 13 pp. doi:10.1155/2010/978085

    Google Scholar 

  72. Serra A, Nepa P, Manara G (2012) A wearable two-antenna system on a life jacket for cospas-sarsat personal locator beacons. IEEE Trans Antennas Propag 60(2):1035–1042

    Article  Google Scholar 

  73. Lilja J, Pynttari V, Kaija T, Makinen R, Halonen E, Sillanpaa H, Heikkinen J, Mantysalo M, Salonen P, de Maagt P (2013) Body-worn antennas making a splash: lifejacket-integrated antennas for global search and rescue satellite system. IEEE Antennas Propag Mag 55(2):324–341

    Google Scholar 

  74. Agneessens S, Van Torre P, Declercq F, Spinnewyn B, Stockman G, Rogier H, Vande Ginste D (2012) Design of a wearable, low-cost, through-wall doppler radar system. Int J Antennas Propag. Article ID 840924, 9 pp. doi:10.1155/2012/840924

    Google Scholar 

  75. Chen LF, Ong CK, Neo CP, Varadan VV, Varadan VK (2004) Microwave electronics: measurements and materials characterization, 1st edn. Wiley, Chichester

    Book  Google Scholar 

  76. Yue H, Virga KL, Prince JL (1998) Dielectric constant and loss tangent measurement using a stripline fixture. IEEE Trans Compon Packag Manuf Technol 21(4):441–446

    Article  Google Scholar 

  77. Seager R, Zhang S, Chauraya A, Whittow W, Vardaxoglou Y, Acti T, Dias T (2013) Effect of the fabrication parameters on the performance of embroidered antennas. IET Microwaves Antennas Propag 7(14):1174–1181

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hendrik Rogier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Singapore

About this entry

Cite this entry

Rogier, H. (2015). Textile Antenna Systems: Design, Fabrication, and Characterization. In: Tao, X. (eds) Handbook of Smart Textiles. Springer, Singapore. https://doi.org/10.1007/978-981-4451-45-1_38

Download citation

Publish with us

Policies and ethics