Skip to main content

Printed Textile-Based Electronic Devices

  • Reference work entry
  • First Online:
Handbook of Smart Textiles

Abstract

Printed textile-based electronic devices are reviewed. The primary printing techniques utilized are screen and inkjet printing. Conductive tracks can be achieved by means of directly printing on the textile or via an interface priming layer which is first printed to smooth the textile. Conductive tracks can be used to fabricate simple electronic tracks for use as interconnects in a printed circuit board and a fabric antenna or for biopotential monitoring. Combining a dielectric and a conductive layer allows the formation of capacitors on textiles.

Force sensing can be achieved by means of printed resistors or piezoelectric materials. Printed resistors can also be used to produce a heater. Energy harvesting on fabric can be achieved by means of printed semiconductor layers based on thermoelectric harvesting and solar cells. Color variation on fabric can be achieved by printed chromic layers which change color in response to heat (thermochromic) or electrical stimulus (electrochromic). Light emission can be achieved by printed electroluminescent layers. Sacrificial layer technology allows the formation of three-dimensional structures on fabrics such as cantilevers which can be used for motion sensing.

Devices must be sufficiently robust to be suitable for daily use in particular in respect of bending, abrasion, and washing. The durability to bending can be tested by flexing the printed conductive layer around a mandrel. Abrasion durability is evaluated by rubbing the printed conductive textile against a 100 % wool textile with a specific force loading. Wash durability is the most critical function for everyday wearable electronics. Encapsulation, either by lamination or printing, is an effective method to improve the washing durability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Whitbread D (2009) The design manual, 2nd edn. UNSW Press. ISBN: 978-1742230009

    Google Scholar 

  2. Magdassi S (2009) The chemistry of inkjet inks. World Scientific, Singapore. ISBN 978-9812818218

    Book  Google Scholar 

  3. Panzini M (2011) Thick films: properties, technology and applications. Nova Science, New York. ISBN 978-1614703846

    Google Scholar 

  4. Gilleo K (1996) Polymer thick film. Springer, New York. ISBN 978-0442012205

    Google Scholar 

  5. Tekscan. http://www.tekscan.com/tekscan-technology#Sensor. Accessed 08 Jul 2014

  6. Interlink Electronics. http://www.interlinkelectronics.com/products.php. Accessed 08 Jul 2014

  7. Chang L (2006) Foundations of MEMS. Pearson Education Prentice Hall, New Jersey. ISBN 0-13-147286-0

    Google Scholar 

  8. ElectroScience Ltd. Application notes on thick-film heaters. http://www.electroscience.com/heaterappnotes.html. Accessed 09 Jul 2014

  9. NEL Ltd. Neltex fabric-based circuit technology. http://www.nel-ltd.co.uk/neltex.php. Accessed 09 Jul 2014

  10. Torah R, Yang K, Beeby S, Tudor J (2012) Screen-printed multilayer meander heater on polyester cotton. At 88th Textile Institute world conference, Shah Alam, May 2012, pp 15–17

    Google Scholar 

  11. Parker G (2004) Introductory semiconductor device physics. IOP Publishing, London. ISBN 978–0750310215

    Google Scholar 

  12. Beeby S, White N (2010) Energy harvesting for autonomous systems. Artech House, Norwood. ISBN 978-1596937185

    Google Scholar 

  13. Cady W (1964) Piezoelectricity: an introduction to the theory and applications of electromechanical phenomena in crystals, 1st edn. McGraw-Hill, New York

    Google Scholar 

  14. Bamfield P, Hutchings M (2010) Chromic phenomena – technological applications of colour chemistry, 2nd edn. RSC Publishing, Cambridge. ISBN 978-1847558688

    Google Scholar 

  15. Christie S, Robertson S, Taylor S (2007) Colour: design and creativity, design concepts for a temperature sensitive environment using thermochromic colour change. SDC issue 1

    Google Scholar 

  16. Aitken D, Burkinshaw SM, Griffiths J, Towns AD (1996) Textile applications of thermochromic systems. Rev Prog Color Relat Top 26:1–8. doi:10.1111/j.1478-4408.1996.tb00105.x

    Article  Google Scholar 

  17. MacLaren D, White M (2003) Dye–developer interactions in the crystal violet lactone–lauryl gallate binary system: implications for thermochromism. J Mat Chem 13:1695–1700. doi:10.1039/B302249H

    Article  Google Scholar 

  18. Kulcar R, Klanjšek G, Friškovec M (2010) Thermochromic inks – dynamic colour possibilities. In: CREATE conference, Gjøvik, Norway

    Google Scholar 

  19. Liquid crystals. http://www.colorchange.com/liquidcrystals. Accessed 01 May 2014

  20. Robertson S, Taylor S, Christie R, Fletcher J, Rossini L (2008) Designing with a responsive colour palette: the development of colour and pattern changing products. Adv Science Technol 60:26–31. doi:10.4028/www.scientific.net/AST.60.26

    Article  Google Scholar 

  21. Platt J (1961) Electrochromism, a possible change of colour producible in dyes by an electric field. J Chem Phys 34:862–863. doi:10.1063/1.1731686

    Article  Google Scholar 

  22. Monk P, Mortimer R, Rosseinsky D (1995) Electrochromism: fundamentals and applications. VCH, Weinheim. ISBN 978-3527290635

    Book  Google Scholar 

  23. Tehrani P, Isaksson J, Mammo W, Andersson N, Robinson N, Berggren M (2006) Evaluation of active materials designed for use in printable electrochromic polymer displays. Thin Solid Films 515:2485–2492. doi:10.1016/j.tsf.2006.07.149

    Article  Google Scholar 

  24. Ono Y (1995) Electroluminescent displays, vol 1. World Scientific, Singapore

    Book  Google Scholar 

  25. Vij D (ed) (2004) Handbook of electroluminescent materials. Institute of Physics, Bristol

    Google Scholar 

  26. T-equaliser Company. http://www.tqualizer.com/. Accessed 4 Jul 2014

  27. Elise Co. Puddle jumper. http://www.organicui.org/?page_id=67. Accessed 4 Jul 2014

  28. Torah R, Yang K, Wei Y, Li Y, de Vos M, Beeby S, Tudor J (2013) Screen and inkjet printed electronics on fabrics – the next generation of E-textiles. In: Plastic electronics conference, Dresden, Germany

    Google Scholar 

  29. Lee Y, Park K, Lee J, Lee C, Yoo H, Kim C, Yoon Y (1997) Dry release for surface micromachining with HF vapor-phase etching. J Microelectromech Syst 6:226–233. doi:10.1109/84.623111

    Article  Google Scholar 

  30. Madou M (2011) Fundamentals of microfabrication and nanotechnology, 3rd edn. CRC Press, Boca Raton, Florida. ISBN 978-0849331800

    Google Scholar 

  31. Linder V, Gates B, Ryan D, Parviz B, Whitesides G (2005) Water-soluble sacrificial layers for surface micromachining. Small 1:730–736. doi:10.1002/smll.200400159

    Article  Google Scholar 

  32. Dykyj J, Svoboda J, Wilhoit R, Frenkel M, Hall K (2000) Vapor pressure of chemicals: vapor pressure and antoine constants for oxygen containing organic compounds. Springer, New York/Berlin/Heidelberg. ISBN 978-3540649687

    Google Scholar 

  33. Humphrey LE (2012) Plastic crystals. Claud Press, Germany. ISBN: 9786201140219

    Google Scholar 

  34. Wei Y, Torah R, Kai Y, Beeby S, Tudor J (2012) A novel fabrication process for capacitive cantilever structures for smart fabric applications. Design, test, integration and packaging of MEMS/MOEMS

    Google Scholar 

  35. Edmison J, Jones M, Nakad Z, Martin T (2002) Using piezoelectric materials for wearable electronic textiles. In: Sixth international symposium on wearable computers, Seattle, Washington

    Google Scholar 

  36. Cho G, Jeong K, Paik MJ, Kwun Y, Sung M (2011) Performance evaluation of textile-based electrodes and motion sensors for smart clothing. IEEE Sensors 11:3183–3193. doi:10.1109/JSEN.2011.2167508

    Article  Google Scholar 

  37. Merritt C, Nagle H (2009) Textile based capacitive sensors for respiration monitoring. IEEE Sensors 9:71–78. doi:10.1109/JSEN.2008.2010356

    Article  Google Scholar 

  38. Wei Y, Torah R, Yang K, Beeby S, Tudor J (2013) Screen printing of a capacitive cantilever-based motion sensor on fabric using a novel sacrificial layer process for smart fabric applications. Meas Sci Technol 24:075104. doi:10.1088/0957–0233/24/7/075104

    Article  Google Scholar 

  39. Wei Y, Torah R, Yang K, Beeby S, Tudor J (2013) A screen printable sacrificial fabrication process to realise a cantilever on fabric using a piezoelectric layer to detect motion for wearable applications. Sensors Actuators A Phys 203:241–248. doi:10.1016/j.sna.2013.08.041

    Article  Google Scholar 

  40. Patra P, Calvert P, Warner S (2007) Textile based carbon nanostructured flexible antenna. National Textile Centre Annual Report, Project number: M06-MD01

    Google Scholar 

  41. Li Y, Torah R, Beeby S, Tudor J (2012) Inkjet printed flexible antenna on textile for wearable applications. In: 2012 Textile Institute world conference, Shah Alam, Malaysia

    Google Scholar 

  42. Whittow WG, Chauraya A, Vardaxoglou JC, Li Y, Torah R, Yang K, Beeby S, Tudor J (2014) inkjet printed microstrip patch antennas realized on textile for wearable applications. IEEE Antenna Wirel Propog Lett 13:71–74. doi:10.1109/LAWP.2013.2295942

    Article  Google Scholar 

  43. Whittow WG, Li Y, Torah R, Yang K, Beeby S, Tudor J (2014) Printed frequency selective surface on textiles. Electron Lett 50(13):916–917. doi:10.1049/el.2014.0955

    Article  Google Scholar 

  44. Li Y, Torah R, Beeby S, Tudor J (2012) An all-inkjet printed flexible capacitor on a textile using a new poly(4-vinylphenol) dielectric ink for wearable applications. IEEE Sensors 1–4. doi:10.1109/ICSENS.2012.6411117

    Google Scholar 

  45. Paul G, Torah R, Yang K, Beeby S, Tudor J (2014) An investigation into the durability of screen-printed conductive tracks on textiles. Meas Sci Technol 25:025006. doi:10.1088/0957-0233/25/2/025006 (11 p)

    Article  Google Scholar 

  46. Mathis AG. http://www.mathisag.com. Accessed 05 Jul 2014

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Tudor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Singapore

About this entry

Cite this entry

Torah, R., Wei, Y., Li, Y., Yang, K., Beeby, S., Tudor, J. (2015). Printed Textile-Based Electronic Devices. In: Tao, X. (eds) Handbook of Smart Textiles. Springer, Singapore. https://doi.org/10.1007/978-981-4451-45-1_35

Download citation

Publish with us

Policies and ethics