Skip to main content

Evaluation Methods and Instruments of Dry Biopotential Electrodes

  • Reference work entry
  • First Online:
Handbook of Smart Textiles
  • 4803 Accesses

Abstract

Dry biopotential electrodes (DBPE) are suitable for measuring biopotential in long-term health monitoring systems due to simpler operation and less skin irritation than wet electrodes in the application process. So far, no uniform test standard and instrument was performed for evaluating the quality of dry electrodes. In this chapter, measurement methods and instruments for evaluating the quality of dry biopotential electrodes were reviewed systematically. These measurement methods and instruments were classified into two categories: (1) common methods and instruments and (2) special methods and instruments. Properties of dry biopotential electrodes were summed up in the following several aspects: electrical conductivity, electrochemical impedance spectra, contact impedance, appearance, crystal texture, open circuit potential (OCP), biopotential signal noise and dynamic open circuit potential (DOCP), and so on. With progress of materials and electronics technology, more and more novel dry electrodes will be developed, and corresponding evaluation methods and instruments will also be fabricated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Coskey RJ (1977) Contact dermatitis caused by ECG electrode jelly. Arch Dermatol 113:839–840

    Article  Google Scholar 

  2. Uter W, Schwanitz HJ (1996) Contact dermatitis from propylene glycol in ECG electrode gel. Contact Dermatitis 34:230–231

    Article  Google Scholar 

  3. Webster JG (ed) (2010) Medical instrumentation: application and design, 4th edn. Wiley, Hoboken

    Google Scholar 

  4. Wiese SR, Anheier P, Connemara RD, Mollner AT, Neils TE, Kahn JA, Webster JG (2005) Electrocardiographic motion artifact versus electrode impedance. IEEE Trans Biomed Eng 1:136–139

    Article  Google Scholar 

  5. Xu PJ, Zhang H, Tao XM (2008) Textile-structured electrodes for electrocardiogram. Text Prog 40:183–213

    Article  Google Scholar 

  6. Meziane N, Webster JG, Attari M et al (2013) Dry electrodes for electrocardiography. Physiol Meas 34(9):R47–R69. doi:10.1088/0967-3334/34/9/R47

    Article  Google Scholar 

  7. Padmadinata FZ, Veerhoek JJ, van Dijk GJA, Huijsing GH et al (1990) Microelectronic skin electrode. Sens Actuators B B1(1–6):491–494. doi:10.1016/0925-4005(90)80257-Z

    Article  Google Scholar 

  8. Alizadeh-Taheri B, Smith RL, Knight RT (1996) An active, microfabricated, scalp electrode array for EEG recording. Sens Actuators A Phys A54(1–3):606–611. doi:10.1016/S0924-4247(97)80023-4

    Article  Google Scholar 

  9. Wang Yu, Pei WeiHua, Guo Kai et al (2011) Dry electrode for the measurement of biopotential Signals. Sci China Inf Sci 54(11):2435–2442. doi: 10.1007/s11432-011-4354-0

    Google Scholar 

  10. Pedrosa P, Alves E, Barradas NP, Martin N, Fiedler P, Haueisen J, Vaz F, Fonseca C (2014) Electrochemical behaviour of nanocomposite Agx:TiN thin films for dry biopotential electrodes. Electrochimica Acta 125:48–57. http://dx.doi.org/10.1016/j.electacta.2014.01.082

  11. Griss P, Tolvanen-Laakso HK, Merilainen P et al (2002) Characterization of micromachined spiked biopotential electrodes. IEEE Eng Med Biol Soc 49(6):597–604. doi:10.1109/TBME.2002.1001974

    Article  Google Scholar 

  12. Yuanfang Chen, Weihua Pei, Sanyuan Chen, Xian Wu, Shanshan Zhao, Huan Wang, Hongda Chen (2013) Poly(3,4-ethylenedioxythiophene) (PEDOT) as interface material for improving electrochemical performance of microneedles array-based dry electrode. Sens Actuators B188:747–756

    Google Scholar 

  13. Dias NS, Carmo JP, da Ferreira SA et al (2010) New dry electrodes based on iridium oxide (IrO) For non-invasive biopotential recordings and stimulation. Sens Actuators A Phys 164(1–2):28–34. doi:10.1016/j.sna.2010.09.016

    Article  Google Scholar 

  14. Nishimura S, Tomita Y, Horiuchi T (1992) Clinical application of an active electrode using an operational amplifier. IEEE Trans Biomed Eng 39(10):1096–1099. doi:10.1109/10.161342

    Article  Google Scholar 

  15. Taheri BA, Knight RT, Smith RL (1994) A dry electrode for EEG recording. Electroencephalogr Clin Neurophysiol 90(5):376–383. doi:10.1016/0013-4694(94)90053-1

    Article  Google Scholar 

  16. Fonseca C, Silva CJP, Martins RE et al (2007) A novel dry active electrode for EEG recording. IEEE Trans Biomed Eng 54(1):162–165. doi:10.1109/TBME.2006.884649

    Article  Google Scholar 

  17. Geddes LA, Valentinuzzi ME (1973) Temporal changes in electrode impedance while recording the electrocardiogram with “dry” electrodes. Ann Biomed Eng 1(3):356–367. doi:10.1007/BF0240767

    Article  Google Scholar 

  18. Fonseca C, Vaz F, Barbosa MA (2004) Electrochemical behaviour of titanium coated stainless steel by r.f. sputtering in synthetic sweat solutions for electrode applications. Corros Sci 46(12):3005–3018. doi:10.1016/j.corsci.2004.04.006

    Article  Google Scholar 

  19. Salvo P, Raedt R, Carrette E (2012) A 3D printed dry electrode for ECG/EEG recording. Sens Actuators A Phys 174:96–102

    Article  Google Scholar 

  20. Matteucci M, Carabalona R, Casella M, Di Fabrizio E, Gramatica F, Di Rienzo M, Snidero E, Gavioli L, Sancrotti M (2007) Micropatterned dry electrodes for brain–computer interface. Microelectronic Eng 84:1737–1740

    Article  Google Scholar 

  21. Giulio R, Stephen D, Esteve F et al (2006) A dry electrophysiology electrode using CNT arrays. Sens Actuators A Phys 132(1):34–41. doi:10.1016/j.sna.2006.06.013

    Article  Google Scholar 

  22. Salla K, Antti K, Mika S et al (2014) Liquid silicone rubber (LSR)-based dry bioelectrodes: the effect of surface micropillar structuring and silver coating on contact impedance. Sens Actuators A Phys 206:22–29. doi:10.1016/j.sna.2013.11.020

    Article  Google Scholar 

  23. Mota AR, Duarte L, Rodrigues D et al (2013) Development of a quasi-dry electrode for EEG recording. Sens Actuators A Phys 199:310–317. doi:10.1016/j.sna.2013.06.013

    Article  Google Scholar 

  24. Chen Chih-Yuan, Chang Chia-Lin, Chang Chih-Wei et al (2013) A low-power bio-potential acquisition system with flexible PDMS dry electrodes for portable ubiquitous health care applications. Sensors 13(3):3077–3091. doi: 10.3390/s130303077

    Google Scholar 

  25. Prats-Boluda G, Ye-Lin Y, Garcia-Breijo E, Ibanez J, Garcia-Casado J (2012) Active flexible concentric ring electrode for non-invasive surface bioelectrical recordings. Meas Sci Technol 23:125703. doi:10.1088/0957-0233/23/12/125703

    Article  Google Scholar 

  26. Ju-Yeoul Baek, Jin-Hee An, Jong-Min Choi, Kwang-Suk Park, Sang-Hoon Lee (2008) Flexible polymeric dry electrodes for the long-term monitoring of ECG. Sens Actuators A 143:423–429. doi: 10.1016/j.sna.2007.11.019

    Google Scholar 

  27. Kang Tae-Ho, Merritt Carey R, Edward G et al (2008) Nonwoven fabric active electrodes for biopotential measurement during normal daily activity. IEEE Trans Biomed Eng 5(1):188–195. doi: 10.1109/TBME.2007.910678

    Google Scholar 

  28. Merritt Carey R, Troy NH, Edward G (2009) Fabric-based active electrode design and fabrication for health monitoring clothing. IEEE Trans Inf Technol Biomed 13(2):274–280. doi:10.1109/TITB.2009.2012408

    Article  Google Scholar 

  29. Oh Tong In, Yoon Sun, Kim ae Eui et al (2013) Nanofiber web textile dry electrodes for long-term bio potential recording. IEEE Trans Biomed Circuits Syst 7(2):204–211. doi: 10.1109/TBCAS.2012.2201154

    Google Scholar 

  30. Priniotakis G, Westbroek P, Van Langenhove L et al (2005) An experimental simulation of human body behaviour during sweat production measured at textile electrodes. Int J Cloth Sci Technol 17(3–4):232–241. doi:10.1108/09556220510590939

    Article  Google Scholar 

  31. Westbroek P, Priniotakis G, Palovuori E, De Clerck K, Van Langenhove L, Kiekens P (2006) Quality control of textile electrodes by electrochemical impedance spectroscopy. Text Res J 2:152–159

    Article  Google Scholar 

  32. Beckmann L, Neuhaus C, Medrano G, Jungbecher N, Walter M, Gries T, Leonhardt S (2010) Characterization of textile electrodes and conductors using standardized measurement setups. Physiol Meas 31:233–247

    Article  Google Scholar 

  33. Hao Liu, Tao Xiaoming Xu Pengjun, Zhang Hui, Bai Ziqian (2013) A dynamic measurement system for evaluating dry bio-potential surface electrodes. Measurement 46(6):1903–1914

    Google Scholar 

  34. Liu Hao, Kang Weimin, Tao Xiaoming, Bai Ziqian, Xu Pengjun, Zhang Hui (2012) Performance evaluation of surface biopotential dry electrodes based on PSD and EIS. Int J Advancements Comput Technol (IJACT) 4(20):497–505

    Google Scholar 

  35. Pedrosa P, Machado D, Lopes C et al (2013) Nanocomposite Ag: TiN thin films for dry biopotential electrodes. Appl Surf Sci 285:40–48. doi:10.1016/j.apsusc.2013.07.154

    Article  Google Scholar 

  36. Gondran C, Siebert E, Yacoub S, Novakov E (1996) Noise of surface bio-potential electrodes based on NASICON ceramic and Ag/AgCl. Med Biol Eng Comput 34(6):460–466. doi:10.1007/BF02523851

    Article  Google Scholar 

  37. Gondran C, Siebert E, Fabry P (1995) Non-polarisable dry electrode based on NASICON ceramic. Med Biol Eng Comput 33(3):452–457. doi:10.1007/BF02510529

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liu Hao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Singapore

About this entry

Cite this entry

Hao, L., Tao, X. (2015). Evaluation Methods and Instruments of Dry Biopotential Electrodes. In: Tao, X. (eds) Handbook of Smart Textiles. Springer, Singapore. https://doi.org/10.1007/978-981-4451-45-1_33

Download citation

Publish with us

Policies and ethics