Skip to main content

Soft Tactile Sensors for Human-Machine Interaction

  • Reference work entry
  • First Online:
Handbook of Smart Textiles

Abstract

With many upcoming aging societies, the demand for automated assembly lines, the need for surgery robots in hospitals, and the growing popularity of personal products with touch interfaces, more advanced and reliable soft tactile sensing techniques are required for human-machine interaction. Soft tactile interface will enable new generations of touch-sensitive health-care robots to attend the old and the disabled, pressure-sensing shoes and garment to collect human physiological signals for health monitoring, and many others in various fields including biomedical, agriculture, and food processing.

In the past decade, substantial effort has been made toward soft tactile sensors for smart skin that emulates the human skin, where four different types of touch receptors are embedded in a viscoelastic media, dermis. Current tactile sensing techniques include capacitive, piezoelectric, conductive elastomeric, optical, and conductive liquid types. Although each has its merits and limitations, many extreme tactile sensors have been developed: some can detect a pressure of 13 mPa; some show a sensitivity of 8.4 kPa−1 in the low-pressure regime; some tolerate a 300 % stretch; some measure three-dimensional forces; and some remain stable after 100,000 repetitive loadings. Nevertheless, no single sensing technology provides sensors on a par with human skin in all technical aspects, including sensitivity, hysteresis, response time, spatial resolution, flexibility, and stretchability. Fortunately, it is viable to emulate a subgroup of the four human force receptors.

Future directions of soft tactile sensors are task-centered design, nano-material, micro-fabrication and replication techniques, as well as more soft, elastic, and dynamic tactile sensing. Future development of soft tactile sensing solutions for human-machine interface shall reasonably bring more surprises to our life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Najarian S, Dargahi J et al (2009) Artificial tactile sensing in biomedical engineering. McGraw-Hill, New York

    Google Scholar 

  2. Maheshwari V, Saraf RF (2008) Tactile devices to sense touch on a par with a human finger. Angew Chem Int Edit 47(41):7808–7826

    Article  Google Scholar 

  3. Robles-De-La-Torre G, Hayward V (2001) Force can overcome object geometry in the perception of shape through active touch. Nature 412(6845):445–448

    Article  Google Scholar 

  4. Johansson RS, Flanagan JR (2009) Coding and use of tactile signals from the fingertips in object manipulation tasks. Nat Rev Neurosci 10(5):345–359

    Article  Google Scholar 

  5. Nyce DS (2004) Linear position sensors theory and application. Wiley, Hoboken

    Google Scholar 

  6. Groves RB, Coulman SA, Birchall JC, Evans SL (2012) Quantifying the mechanical properties of human skin to optimise future microneedle device design. Comput Method Biomec 15(1):73–82

    Article  Google Scholar 

  7. Wessendorf AM, Newman DJ (2012) Dynamic understanding of human-skin movement and strain-field analysis. IEEE Trans BioMed Eng 59(12):3432–3438

    Article  Google Scholar 

  8. Lipomi DJ et al (2011) Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat Nanotechnol 6(12):788–792

    Article  Google Scholar 

  9. Wang XL, Li TJ, Adam J, Yang J (2013) Transparent, stretchable, carbon-nanotube-inlaid conductors enabled by standard replication technology for capacitive pressure, strain and touch sensors. J Mater Chem A 1(11):3580–3586

    Article  Google Scholar 

  10. Hu WL, Niu XF, Zhao R, Pei QB (2013) Elastomeric transparent capacitive sensors based on an interpenetrating composite of silver nanowires and polyurethane. Appl Phys Lett 102(8):083303

    Article  Google Scholar 

  11. Yao SS, Zhu Y (2014) Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires. Nanoscale 6(4):2345–2352

    Article  Google Scholar 

  12. Lam CW, James JT, McCluskey R, Hunter RL (2004) Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci 77(1):126–134

    Article  Google Scholar 

  13. Donaldson K et al (2006) Carbon nanotubes: a review of their properties in relation to pulmonary toxicology and workplace safety. Toxicol Sci 92(1):5–22

    Article  Google Scholar 

  14. Wong RDP, Posner JD, Santos VJ (2012) Flexible microfluidic normal force sensor skin for tactile feedback. Sensor Actuat A Phys 179:62–69

    Article  Google Scholar 

  15. Eaves D (2004) Handbook of polymer foams. Smithers Rapra Press, Akron

    Google Scholar 

  16. Vandeparre H, Watson D, Lacour SP (2013) Extremely robust and conformable capacitive pressure sensors based on flexible polyurethane foams and stretchable metallization. Appl Phys Lett 103(20):204103

    Article  Google Scholar 

  17. Xia YN, Whitesides GM (1998) Soft lithography. Angew Chem Int Edit 37(5):551–575

    Article  Google Scholar 

  18. Noderer WL et al (2007) Enhanced adhesion and compliance of film-terminated fibrillar surfaces. Proc R Soc A Math Phys 463(2086):2631–2654

    Article  Google Scholar 

  19. Mannsfeld SCB et al (2010) Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat Mater 9(10):859–864

    Article  Google Scholar 

  20. Schwartz G et al (2013) Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nat Commun 4. doi:10.1038/ncomms2832

    Google Scholar 

  21. Fan FR et al (2012) Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Lett 12(6):3109–3114

    Article  Google Scholar 

  22. Kim J, Ng TN, Kim WS (2012) Highly sensitive tactile sensors integrated with organic transistors. Appl Phys Lett 101(10):103308

    Article  Google Scholar 

  23. Meyer J, Arnrich B, Schumm J, Troster G (2010) Design and modeling of a textile pressure sensor for sitting posture classification. IEEE Sens J 10(8):1391–1398

    Article  Google Scholar 

  24. Takamatsu S, Kobayashi T, Shibayama N, Miyake K, Itoh T (2012) Fabric pressure sensor array fabricated with die-coating and weaving techniques. Sens Actuat A Phys 184:57–63

    Article  Google Scholar 

  25. Lee HK, Chung J, Chang SI, Yoon E (2011) Real-time measurement of the three-axis contact force distribution using a flexible capacitive polymer tactile sensor. J Micromech Microeng 21(3):035010

    Article  Google Scholar 

  26. Dobrzynska JA, Gijs MAM (2013) Polymer-based flexible capacitive sensor for three-axial force measurements. J Micromech Microeng 23(1):105009

    Google Scholar 

  27. Viry L et al (2014) Flexible three-axial force sensor for soft and highly sensitive artificial touch. Adv Mater 26(17):2659–2664

    Article  Google Scholar 

  28. Cady WF (1946) Piezoelectricity. McGraw-Hill, New York

    Google Scholar 

  29. Persano L et al (2013) High performance piezoelectric devices based on aligned arrays of nanofibers of poly(vinylidenefluoride-co-trifluoroethylene). Nat Commun 4:1633

    Article  Google Scholar 

  30. Tien NT et al (2014) A flexible bimodal sensor array for simultaneous sensing of pressure and temperature. Adv Mater 26(5):796–804

    Article  Google Scholar 

  31. Someya T (2012) Stretchable electronics. Wiley-VCH, Weinheim

    Book  Google Scholar 

  32. Kim DH et al (2011) Materials for multifunctional balloon catheters with capabilities in cardiac electrophysiological mapping and ablation therapy. Nat Mater 10(4):316–323

    Article  Google Scholar 

  33. Someya T et al (2004) A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. Proc Natl Acad Sci USA 101(27):9966–9970

    Article  Google Scholar 

  34. Someya T et al (2005) Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. Proc Natl Acad Sci USA 102(35):12321–12325

    Article  Google Scholar 

  35. Kaltenbrunner M et al (2013) An ultra-lightweight design for imperceptible plastic electronics. Nature 499(7459):458

    Article  Google Scholar 

  36. Takei K et al (2010) Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. Nat Mater 9(10):821–826

    Article  Google Scholar 

  37. Alirezaei H, Nagakubo A, Kuniyoshi Y (2007) A highly stretchable tactile distribution sensor for smooth surfaced humanoids. In: Proceedings IEEE-RAS international conference on humanoid robots (ICHR ‘07), Pittsburgh, pp 167–173

    Google Scholar 

  38. Zhou DB, Wang HP (2013) Design and evaluation of a skin-like sensor with high stretchability for contact pressure measurement. Sens Actuat A Phys 204:114–121

    Article  Google Scholar 

  39. Wang YY et al (2011) Novel fabric pressure sensors: design, fabrication, and characterization. Smart Mater Struct 20(6):065015

    Article  Google Scholar 

  40. Shu L et al (2010) In-shoe plantar pressure measurement and analysis system based on fabric pressure sensing array. IEEE Trans Inf Technol Biomed 14(3):767–775

    Article  Google Scholar 

  41. Wang F, Zhu B, Shu L, Tao XM (2014) Flexible pressure sensors for smart protective clothing against impact loading. Smart Mater Struct 23(1):015001

    Article  Google Scholar 

  42. Choong CL et al (2014) Highly stretchable resistive pressure sensors using a conductive elastomeric composite on a micropyramid array. Adv Mater 26(21):3451–3458

    Article  Google Scholar 

  43. Park J et al (2014) Giant tunneling piezoresistance of composite elastomers with interlocked microdome arrays for ultrasensitive and multimodal electronic skins. ACS Nano 8(5):4689–4697

    Article  Google Scholar 

  44. Pang C et al (2012) A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres. Nat Mater 11(9):795–801

    Article  Google Scholar 

  45. Wang XW, Gu Y, Xiong ZP, Cui Z, Zhang T (2014) Silk-molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals. Adv Mater 26(9):1336–1342

    Article  Google Scholar 

  46. Wang XW, Gu Y, Xiong ZP, Cui Z, Zhang T (2014) Silk-molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals. Exp Dermatol 23(3):1336–1342

    Google Scholar 

  47. Hu CF, Su WS, Fang WL (2011) Development of patterned carbon nanotubes on a 3D polymer substrate for the flexible tactile sensor application. J Micromech Microeng 21(11):115012

    Article  Google Scholar 

  48. Tee BCK, Wang C, Allen R, Bao ZN (2012) An electrically and mechanically self-healing composite with pressure- and flexion-sensitive properties for electronic skin applications. Nat Nanotechnol 7(12):825–832

    Article  Google Scholar 

  49. Rothmaier M, Luong MP, Clemens F (2008) Textile pressure sensor made of flexible plastic optical fibers. Sensors Basel 8(7):4318–4329

    Article  Google Scholar 

  50. Zhang ZF, Tao XM, Zhang HP, Zhu B (2013) Soft fiber optic sensors for precision measurement of shear stress and pressure. IEEE Sens J 13(5):1478–1482

    Article  Google Scholar 

  51. Ramuz M, Tee BCK, Tok JBH, Bao ZN (2012) Transparent, optical, pressure-sensitive artificial skin for large-area stretchable electronics. Adv Mater 24(24):3223–3227

    Article  Google Scholar 

  52. Levi A, Piovanelli M, Furlan S, Mazzolai B, Beccai L (2013) Soft, transparent, electronic skin for distributed and multiple pressure sensing. Sensors Basel 13(5):6578–6604

    Article  Google Scholar 

  53. Yun S et al (2014) Polymer-waveguide-based flexible tactile sensor array for dynamic response. Adv Mater 26(26):4474–4480

    Article  Google Scholar 

  54. Dickey MD et al (2008) Eutectic gallium-indium (EGaIn): a liquid metal alloy for the formation of stable structures in microchannels at room temperature. Adv Funct Mater 18(7):1097–1104

    Article  Google Scholar 

  55. Park YL, Chen BR, Wood RJ (2012) Design and fabrication of soft artificial skin using embedded microchannels and liquid conductors. IEEE Sens J 12(8):2711–2718

    Article  Google Scholar 

  56. Vogt DM, Park YL, Wood RJ (2013) Design and characterization of a soft multi-axis force sensor using embedded microfluidic channels. IEEE Sens J 13(10):4056–4064

    Article  Google Scholar 

  57. Hammond FL, Kramer RK, Qian W, Howe RD, Wood RJ (2014) Soft tactile sensor arrays for force feedback in micromanipulation. Sens J IEEE 14(5):1443–1452

    Article  Google Scholar 

  58. Eltaib MEH, Hewit JR (2003) Tactile sensing technology for minimal access surgery – a review. Mechatronics 13(10):1163–1177

    Article  Google Scholar 

  59. Lee MH (2000) Tactile sensing: new directions, new challenges. Int J Robot Res 19(7):636–643

    Google Scholar 

  60. Tiwana MI, Redmond SJ, Lovell NH (2012) A review of tactile sensing technologies with applications in biomedical engineering. Sens Actuat A Phys 179:17–31

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Singapore

About this entry

Cite this entry

Wang, F. (2015). Soft Tactile Sensors for Human-Machine Interaction. In: Tao, X. (eds) Handbook of Smart Textiles. Springer, Singapore. https://doi.org/10.1007/978-981-4451-45-1_26

Download citation

Publish with us

Policies and ethics