Skip to main content

Development of Nanogenerators in Wearable Electronics

  • Reference work entry
  • First Online:
Handbook of Smart Textiles

Abstract

This chapter reviews the progress of research development in soft and flexible electric generators for harvesting mechanical energy based on piezoelectric and triboelectric effects. In particular, it covers the operating principles, materials selection and synthesis, device structures, fabrication methods, and performance of two types of soft and flexible generators, that is, piezoelectric and triboelectric nanogenerators (PENGs and TENGs). Benchmark analysis is carried out for both PENGs and TENGs. Various applications of the technology for powering wearable or portable electronics are demonstrated. Towards this end, critical issues and great challenges of soft and flexible TENGs and PENGs are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. [a] Paradiso JA, Starner T (2005) Energy scavenging for mobile and wireless electronics. Pervasive Computing, IEEE, 4(1):18. [b] Mitcheson PD, Yeatman EM, Rao GK, Green TC (2008) Energy harvesting from human and machine motion for wireless electronic devices. Proc IEEE 96(9):1457. [c] Arunachalam VS, Fleischer EL (2008) The global energy landscape and materials innovation. MRS Bull 33:264

    Google Scholar 

  2. http://faster.sprint.com/2013/11/22/energy-harvesting-chips-the-next-big-thing-for-a-connected-world/

  3. [a] Kumar B, Kim SW (2011) Recent advances in power generation through piezoelectric nanogenerators. J Mater Chem 21:18946. [b] Wang X (2012) Piezoelectric nanogenerators – harvesting ambient mechanical energy at the nanometer scale. Nano Energy 1:13. [c] Wang ZL (2013) Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 7(11):9533. [d] Xu S, Hansen BJ, Wang ZL (2010) Piezoelectric-nanowire-enabled power source for driving wireless microelectronics. Nat Commun 1:93

    Google Scholar 

  4. [a] Espinosa HD, Bernal RA, Jolandan MM (2012) Adv Mater 24:4656. [b] Wang ZL, Zhu G, Yang Y, Wang S, Pan C (2012) Mater Today 15:532

    Google Scholar 

  5. Qi Y, McAlpine MC (2010) Nanotechnology-enabled flexible and biocompatible energy harvesting. Energy Environ Sci 3:1275

    Article  Google Scholar 

  6. [a] Jiang X, Huang W, Zhang S (2013) Flexoelectric nano-generator: Materials, structures and devices. Nano Energy 2:1079–1092. [b] Bowen CR, Kim HA, Weaver PM, Dunn S (2014) Piezoelectric and ferroelectric materials and structures for energy harvesting applications. Energy Environ Sci 7:25

    Google Scholar 

  7. [a] Liu J, Fei P, Zhou J, Tummala R, Wang ZL (2008) Toward high output-power nanogenerator. Appl Phys Lett 92:173105. [b] Liu J, Fei P, Song J, Wang X, Lao C, Tummala R, Wang ZL (2008) Carrier density and Schottky barrier on the performance of DC nanogenerator. Nano Lett 8:328. [c] Zhu G, Wang AC, Liu Y, Zhou Y, Wang ZL (2012) Functional electrical stimulation by nanogenerator with 58 V output voltage. Nano Lett 12:3086. [d] Sohn JI, Cha SN, Song BG, Lee S, Kim SM, Ku J, Kim HJ, Park YJ, Choi BL, Wang ZL, Kim JM. Kim K (2013) Engineering of efficiency limiting free carriers and an interfacial energy barrier for an enhancing piezoelectric generation. Energy Environ Sci 6:97. [e] Gao YF, Wang ZL (2009) Equilibrium potential of free charge carriers in a bent piezoelectric semiconductive nanowire. Nano Lett 9(3):1103

    Google Scholar 

  8. [a] Khan A, Abbasi MA, Hussain M, Ibupoto ZH, Wissting J, Nur O, Willander M (2012) Piezoelectric nanogenerator based on zinc oxide nanorods grown on textile cotton fabric. Appl Phys Lett 101:193506. [b] Sheikh N, Afzulpurkar N, Ashraf MW (2013) Robust nanogenerator based on vertically aligned ZnO nanorods using copper substrate. J Nanomater 2013:1. [c] Kim H, Kim SM, Son H, Park B, Ku J, Sohn JI, Im K, Jang JE, Park JJ, Kim O, Cha S, Park YJ (2012) Enhancement of piezoelectricity via electrostatic effects on a textile platform. Energy Environ Sci 5:8932

    Google Scholar 

  9. Wang ZL, Song JH (2006) Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312:242

    Article  Google Scholar 

  10. Wang X, Song J, Liu J, Wang ZL (2007) Direct-current nanogenerator driven by ultrasonic waves. Science 316:102–105

    Article  Google Scholar 

  11. Hu Y, Lin L, Zhang Y, Wang ZL (2012) Replacing a battery by a nanogenerator with 20 V output. Adv Mater 24:110

    Article  Google Scholar 

  12. Choi MY, Choi D, Jin MJ, Kim I, Kim SH, Choi JY, Lee SY, Kim JM, Kim SW (2009) Mechanically powered transparent flexible charge-generating nanodevices with piezoelectric ZnO nanorods. Adv Mater 21:2185

    Article  Google Scholar 

  13. Kim KH, Lee KY, Seo JS, Kumar B, Kim SW (2011) Paper-based piezoelectric nanogenerators with high thermal stability. Small 7:2577

    Article  Google Scholar 

  14. [a] Gao PX, Song J, Liu J, Wang ZL (2007) Nanowire piezoelectric nanogenerators on plastic substrates as flexible power sources for nanodevices. Adv Mater 19:67. [b] Xu S, Qing Y, Xu C, Wei YG, Yang R, Wang ZL (2010) Self-powered nanowire devices. Nat Nanotechnol 5:366. [c] Lu MP, Song JH, Lu MY, Chen MT, Gao YF, Chen LJ, Wang ZL (2009) Piezoelectric nanogenerator using p-type ZnO nanowire arrays. Nano Lett 9(3):1223. [d] Yang R, Qing Y, Li C, Zhu G, Wang ZL (2009) Converting biomechanical energy into electricity by a muscle-movement-driven nanogenerator. Nano Lett 9(3):1201. [e] Xi Y, Song J, Xu S, Yang R, Gao Z, Hu C, Wang ZL (2009) Growth Of ZnO nanotube arrays and nanotube based piezoelectric nanogenerator. J Mater Chem 19:9260. [f] Liu Y, Hansen BJ, Yang R, Wang ZL (2010) Hybrid nanogenerator for concurrently harvesting biomechanical and biochemical energy. ACS Nano 4(7):3647. [g] Cha SN, Seo JS, Kim SM, Kim HJ, Park YJ, Kim SW, Kim JM (2010) Sound-driven piezoelectric nanowire-based nanogenerators. Adv Mater 22:4726. [h] Zhu G, Yang R, Wang S, Wang ZL (2010) Flexible high-output nanogenerator based on lateral ZnO nanowire array. Nano Lett 10:3151. [i] Li Z, Zhu G, Yang R, Wang AC, Wang ZL (2010) Muscle-driven in vivo nanogenerator. Adv Mater 22:2534. [j] Riaz M, Song J, Nur O, Wang ZL, Willander M (2011) Study of the piezoelectric power generation of ZnO nanowire arrays grown by different methods. Adv Funct Mater 21:628. [k] Voon LCLY, Willatzen M (2011) Electromechanical phenomena in semiconductor nanostructures. J Appl Phys 109:031101. [l] Qiu Y, Zhang H, Hu L, Yang D, Wang L, Wang B, Ji J, Liu G, Liu X, Lin J, Li F, Han S (2012) Flexible piezoelectric nanogenerators based on ZnO nanorods grown on common paper substrates. Nanoscale 4:6568. [m] Hsu CL, Chen KC (2012) Improving piezoelectric nanogenerator comprises ZnO nanowires by bending the flexible PET substrate at low vibration frequency. J Phys Chem C 116:9351. [n] Kumar B, Kim SW (2012) Energy harvesting based on semiconducting piezoelectric ZnO nanostructures. Nano Energy 1:342. [o] Lee M, Chen CY, Wang S, Cha SN, Park YJ, Kim JM, Chou LJ, Wang ZL (2012) A hybrid piezoelectric structure for wearable nanogenerators. Adv Mater 24:1759. [p] Lee S, Lee J, Ko W, Cha S, Sohn J, Kim J, Park JG, Parkd YJ, Hong JP (2013) Solution-processed Ag-doped ZnO nanowires grown on flexible polyester for nanogenerator applications. Nanoscale 5:9609. [q] Saravanakumar B, Mohan R, Thiyagarajan K, Kim SJ (2013) Fabrication of a ZnO nanogenerator for eco-friendly biomechanical energy harvesting. RSC Adv 3:16646. [r] Kim K, Sirbuly DJ (2012) Enhanced output of nanostructured piezoelectric arrays via controlled matrix/transducer interfacial interactions. Appl Phys Lett 101:213114

    Google Scholar 

  15. [a] Lin L, Lai CH, Hu Y, Zhang Y, Wang X, Xu C, Snyder RL, Chen LJ, Wang ZL (2011) High output nanogenerator based on assembly of GaN nanowires. Nanotechnology 22:475401. [b] Chen CY, Zhu G, Hu YF, Yu JW, Song JH, Cheng KY, Peng LH, Chou LJ, Wang ZL (2012) Gallium nitride nanowire based nanogenerators and light-emitting diodes. ACS Nano 6(6):5687

    Google Scholar 

  16. Ku NJ, Wang CH, Huang JH, Fang HC, Huang PC, Liu CP (2013) Energy harvesting from the obliquely aligned InN nanowire array with a surface electron-accumulation layer. Adv Mater 25:861

    Article  Google Scholar 

  17. [a] Chen X, Xu S, Yao N, Shi Y (2010) 1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers. Nano Lett 10:2133. [b] Chen CY, Liu TH, Zhou Y, Zhang Y, Chueh YL, Chu YH, He JH, Wang ZL (2012) Electricity generation based on vertically aligned PbZr0.2Ti0.8O3 nanowire arrays. Nano Energy 1:424. [c] Qi Y, Kim J, Nguyen TD, Lisko B, Purohit PK, McAlpine MC (2011) Enhanced piezoelectricity and stretchability in energy harvesting devices fabricated from buckled PZT ribbons. Nano Letters 11:1331. [d] Gu L, Cui N, Cheng L, Xu Q, Bai S, Yuan M, Wu W, Liu J, Zhao Y, Ma F, Qin Y, Wang ZL (2013) Flexible fiber nanogenerator with 209 V output voltage directly powers a light-emitting diode. Nano Lett 13:91

    Google Scholar 

  18. Jung JH, Chen CY, Yun BK, Lee N, Zhou Y, Jo W, Chou LJ, Wang ZL (2012) Lead-free KNbO3 ferroelectric nanorod based flexible nanogenerators and capacitors. Nanotechnology 23:375401

    Article  Google Scholar 

  19. Jung JH, Lee M, Hong J, Ding Y, Chen CY, Chou LJ, Wang ZL (2011) Lead-free NaNbO3 nanowires for a high output piezoelectric nanogenerator. ACS Nano 5(12):10041

    Article  Google Scholar 

  20. [a] Park KI, Xu S, Liu Y, Hwang GT, Kang SJ, Wang ZL, Lee KJ (2010) Piezoelectric BaTiO(3) thin film nanogenerator on plastic substrates. Nano Lett 10(12):4939. [b] Lin ZH, Yang Y, Wu JM, Liu Y, Zhang F, Wang ZL (2012) BaTiO3 nanotubes-based flexible and transparent nanogenerators. J Phys Chem Lett 3:3599. [c] Koka A, Zhou Z, Sodano HA (2014) Vertically aligned BaTiO3 nanowire arrays for energy harvesting. Energy Environ Sci 7:288

    Google Scholar 

  21. [a] Sun C, Shi J, Wang X (2010) Fundamental study of mechanical energy harvesting using piezoelectric nanostructures. J Appl Phy 108:034309. [b] Hansen BJ, Liu Y, Yang R, Wang ZL (2010) Hybrid nanogenerator for concurrently harvesting biomechanical and biochemical energy. ACS Nano 4(7):3647. [c] Chang C, Tran VH, Wang J, Fuh YK, Lin L (2010) Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett 10:726. [d] Shang SM, Zeng W, Tao XM (2011) High stretchable MWNTs/polyurethane conductive nanocomposites. J Mater Chem 21(10):7274. [e] Yang XM, Li LA, Shang SM, Tao XM (2010) Synthesis and characterization of layer–aligned poly(vinyl alcohol)/graphene nanocomposites. Polymer 51(15):3431. [f] Wang RX, Tao XM, Wang Y, Wang GF, Shang SM (2010) Microstructures and electrical conductance of silver nanocrystalline thin films on flexible polymer substrates. Surf Coat Technol 204(8):1206. [g] Zeng W, Tao XM, Chen S, Shang S, Chan HLW, Choy SH (2013) Highly durable all-fiber nanogenerator for mechanical energy harvesting. Energy Environ Sci 6:2631

    Google Scholar 

  22. Chang J, Dommer M, Chang C, Lin L (2012) Piezoelectric nanofibers for energy scavenging applications. Nano Energy 1:356

    Article  Google Scholar 

  23. Shenck NS, Paradiso JA (2001) Energy scavenging with shoe-mounted piezoelectrics. Micro IEEE 21(3):30

    Article  Google Scholar 

  24. [a] Fouseka J, Crossa LE, Litvin DB (1999) Possible piezoelectric composites based on the flexoelectric effect. Mater Lett 39(5):287. [b] Zhu WY, Fu JY, Li N, Cross LE (2006) Piezoelectric composite based on the enhanced flexoelectric effects. Appl Phys Lett 89(19):192904

    Google Scholar 

  25. [a] Majdoub MS, Sharma P, Cagin T (2008) Enhanced size-dependent piezoelectricity and elasticity in nanostructures due to the flexoelectric effect. Phys Rev B 77:125424. [b] Eliseev EA, Morozovska AN, Glinchuk MD, Blinc R (2009) Spontaneous flexoelectric/flexomagnetic effect in nanoferroics. Phys Rev B 79:165433. [c] Majdoub MS, Sharma P, Çağin T (2008) Dramatic enhancement in energy harvesting for a narrow range of dimensions in piezoelectric nanostructures. Phys Rev B 78:121407

    Google Scholar 

  26. Wu WW, Bai S, Yuan MM, Qin Y, Wang ZL, Jing T (2012) Lead zirconate titanate nanowire textile nanogenerator for wearable energy-harvesting and self-powered devices. ACS Nano 6(7):6231

    Article  Google Scholar 

  27. Pereira JN, Sencadas V, Correia V, Rocha JG, Méndez SL (2013) Energy harvesting performance of piezoelectric electrospun polymer fibers and polymer/ceramic composites. Sensors Actuators A Phys 96:55

    Article  Google Scholar 

  28. [a] Park KI, Lee M, Liu Y, Moon S, Hwang GT, Zhu G, Kim JE, Kim SO, Kim do K, Wang ZL, Lee KJ (2012) Flexible nanocomposite generator made of BaTiO3 nanoparticles and graphitic carbons. Adv Mater 24:2999. [b] Park KI, Jeong CK, Ryu J, Hwang GT, Lee KJ (2013) Flexible and large – area nanocomposite generators based on lead zirconate titanate particles and carbon nanotubes. Adv Energy Mater 3(12):1539

    Google Scholar 

  29. Lee JH, Lee KY, Kumar B, Tien NT, Lee NE, Kim SW (2013) Highly sensitive stretchable transparent piezoelectric nanogenerators. Energy Environ Sci 6:169

    Article  Google Scholar 

  30. Wu JM, Xu C, Zhang Y, Wang ZL (2012) Lead-free nanogenerator made from single ZnSnO3 microbelt. ACS Nano 6(5):4335

    Article  Google Scholar 

  31. Xu S, Yeh YW, Poirier G, McAlpine MC, Register RA, Yao N (2013) Flexible piezoelectric PMN-PT nanowire-based nanocomposite and device. Nano Lett 13:2393

    Article  Google Scholar 

  32. Liu ZH, Pan CT, Lin LW, Lai HW (2013) Piezoelectric properties of PVDF/MWCNT nanofiber using near-field electrospinning. Sensors Actuators A Phys 193:13

    Article  Google Scholar 

  33. Wu L, Yuan W, Nakamura T, Atobe S, Hu N, Fukunaga H, Chang C, Zemba Y, Li Y, Watanabe T, Liu Y, Alamusi, Ning H, Li J, Cui H, Zhang Y (2013) Enhancement of PVDF’s piezoelectricity by VGCF and MWNT. Adv Compos Mater 22:49

    Article  Google Scholar 

  34. Fan FR, Tian ZQ, Wang ZL (2012) Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Energy 1:328

    Article  Google Scholar 

  35. Lacks DJ, Mohan Sankaran R (2011) Contact electrification of insulating materials. J Phys D Appl Phys 44:453001

    Article  Google Scholar 

  36. [a] http://en.wikipedia.org/wiki/Work_function. [b] http://www.trifield.com/content/tribo-electric-series/

  37. [a] Nguyen V, Yang R (2013) Effect of humidity and pressure on the triboelectric nanogenerator. Nano Energy 2(5):604. [b] Baytekin HT, Baytekin B, Soh S, Grzybowski BA (2011) Is water necessary for contact electrification? Angew Chem Int Ed 50(30):6766. [c] Zhou YS, Liu Y, Zhu G, Lin ZH, Pan CF, Jing QS, Wang ZL (2013) Linear-grating triboelectric generator based on sliding electrification. Nano Lett 13:2771

    Google Scholar 

  38. Wang S, Lin L, Wang ZL (2012) Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics. Nano Lett 12:6339

    Article  Google Scholar 

  39. Shaw PE (1917) Proc R Soc A Math Phys Eng Sci 94:16–33

    Article  Google Scholar 

  40. Zhang XS, Han MD, Wang RX, Zhu FY, Li ZH, Wang W, Zhang HX (2013) Frequency-multiplication high-output triboelectric nanogenerator for sustainably powering biomedical microsystems. Nano Lett 13:1168

    Article  Google Scholar 

  41. [a] Baytekin HT, Patashinski AZ, Branicki M, Baytekin B, Soh S, Grzybowski BA (2011) The mosaic of surface charge in contact electrification. Science 333:308. [b] Zhu G, Lin ZH, Jing Q, Bai P, Pan C, Yang Y, Zhou Y, Wang ZL (2013) Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator. Nano Lett 13:847

    Google Scholar 

  42. Meng B, Tang W, Too Z-h, Zhang X, Han M, Liu W, Zhang HX (2013) A transparent single-friction-surface triboelectric generator and self-powered touch sensor. Energy Environ Sci 6:3235

    Article  Google Scholar 

  43. Yang Y, Zhang HL, Chen J, Jing QS, Zhou YS, Wen XN, Wang ZL (2013) Single-electrode-based sliding triboelectric nanogenerator for self-powered displacement vector sensor system. ACS Nano 7(8):7342

    Article  Google Scholar 

  44. Zhu G, Chen J, Liu Y, Bai P, Zhou YS, Jing Q, Pan C, Wang ZL (2013) Linear-grating triboelectric generator based on sliding electrification. Nano Lett 13:2282

    Article  Google Scholar 

  45. Hou TC, Yang Y, Zhang H, Chen J, Chen LJ, Lin Wang Z (2013) Triboelectric nanogenerator built inside shoe insole for harvesting walking energy. Nano Energy 2:856

    Article  Google Scholar 

  46. Lin L, Wang S, Xie Y, Jing Q, Niu S, Hu Y, Wang ZL (2013) Segmentally structured disk triboelectric nanogenerator for harvesting rotational mechanical energy. Nano Lett 13:2916–2923

    Article  Google Scholar 

  47. [a] Han MD, Zhang XS, Meng B, Liu W, Tang W, Sun XM, Wang W, Zhang HX (2013) r-Shaped hybrid nanogenerator with enhanced piezoelectricity. ACS Nano 7(10):8554. [b] Yang WQ, Chen J, Zhu G, Yang J, Bai P, Su YJ, Jing QS, Cao X, Wang ZL (2013) Harvesting energy from the natural vibration of human walking. ACS Nano 7(12):11317

    Google Scholar 

  48. [a] Bai P, Zhu G, Lin ZH, Jing QS, Chen J, Zhang G, Ma JS, Wang ZL (2013) Integrated multilayered triboelectric nanogenerator for harvesting biomechanical energy from human motions. ACS Nano 7(4):3713. [b] Zhang H, Yang Y, Hou TC, Su Y, Hu C, Wang ZL (2013) Triboelectric nanogenerator built inside clothes for self-powered glucose biosensors. Nano Energy 2:1019

    Google Scholar 

  49. Lin L, Xie YN, Wang SH, Wu WZ, Niu SM, Wen XN, Wang ZL (2013) Triboelectric active sensor array for self-powered static and dynamic pressure detection and tactile imaging. ACS Nano 7(9):8266

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoming Tao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Singapore

About this entry

Cite this entry

Song, C., Tao, X., Shang, S. (2015). Development of Nanogenerators in Wearable Electronics. In: Tao, X. (eds) Handbook of Smart Textiles. Springer, Singapore. https://doi.org/10.1007/978-981-4451-45-1_21

Download citation

Publish with us

Policies and ethics