Skip to main content

Conducting Polymer Fibers

  • Reference work entry
  • First Online:
Handbook of Smart Textiles

Abstract

Organic fibers that can function as electronic components such as batteries, sensors, and actuators are exciting prospects for new textile technologies known as “smart fabrics” or “e-textiles.” Conducting polymer materials are ideal candidates for such fibers as a result of their good electronic conductivity and mechanical properties and their electrochemical activity. The latter allows the polymer to act as a battery or supercapacitor electrode, to respond to its chemical surroundings as a sensor and to change properties (e.g., color, conductivity, and stiffness) and size when oxidized or reduced. Developing these useful materials into fiber forms has involved wet spinning of soluble forms of polyaniline, polypyrrole, and polythiophene. Both structural modification to the base monomer and the use of solubilizing dopants have been used to render the polymer soluble. In some cases, the addition of carbon nanotubes to the spinning solution has been used to produce composite fibers with improved mechanical and electrical properties. These fibers have been evaluated for applications including biomechanical sensors and artificial muscles. The main current limitation in the further development of conducting polymer fibers for textiles processing is their low toughness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wallace GG et al (2008) Conductive electroactive polymers: intelligent polymer systems, 3rd edn. CRC Press, Boca Raton

    Book  Google Scholar 

  2. Chiang CK et al (1978) Synthesis of highly conducting films of derivatives of polyacetylene, (CH)x. J Am Chem Soc 100(3):1013–1015

    Article  Google Scholar 

  3. Chiang CK et al (1977) Electrical conductivity in doped polyacetylene. Phys Rev Lett 39(17):1098

    Article  Google Scholar 

  4. Shirakawa H et al (1997) Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x. J Chem Soc Chem Commun 16:578–580

    Google Scholar 

  5. Cho SH, Song KT, Lee JY (2007) In: Skotheim TA, Reynolds JR (eds) Handbook of conducting polymers, 3rd edn, Conjugated polymers theory, synthesis, properties and characterization. CRC press, Boca Raton, pp 8.1–8.87

    Google Scholar 

  6. Angelopoulos M et al (1988) Polyaniline: solutions, films and oxidation state. Mol Cryst Liq Cryst 160:151–163

    Google Scholar 

  7. Jain R, Gregory RV (1995) Solubility and rheological characterization of polyaniline base in N-methyl-2-pyrrolidinone and N, N’-dimethylpropylene urea. Synth Met 74(3):263–266

    Article  Google Scholar 

  8. Pomfret SJ et al (1999) Advances in processing routes for conductive polyaniline fibres. Synth Met 101(1–3):724–725

    Article  Google Scholar 

  9. Pomfret SJ et al (2000) Electrical and mechanical properties of polyaniline fibres produced by a one-step wet spinning process. Polymer 41(6):2265–2269

    Article  Google Scholar 

  10. Cao Y, Qiu J, Smith P (1995) Effect of solvents and co-solvents on the processability of polyaniline: I. solubility and conductivity studies. Synth Met 69(1–3):187–190

    Article  Google Scholar 

  11. Cao Y, Smith P, Heeger AJ (1992) Counter-ion induced processability of conducting polyaniline and of conducting polyblends of polyaniline in bulk polymers. Synth Met 48(1):91–97

    Article  Google Scholar 

  12. Wallace GG, Kane-Maguire LAP (2002) Manipulating and monitoring biomolecular interactions with conducting electroactive polymers [Review]. Adv Mater 14(13–14):953

    Article  Google Scholar 

  13. Campbell TE, Hodgson AJ, Wallace GG (1999) Incorporation of Erythrocytes into Polypyrrole to Form the Basis of a Biosensor to Screen for Rhesus (D) Blood Groups and Rhesus (D) Antibodies. Electroanal 11(4):215–222

    Article  Google Scholar 

  14. Gooding JJ et al (2004) Electrochemical modulation of antigen-antibody binding. Biosens Bioelectron 20(2):260–268

    Article  Google Scholar 

  15. Smela E, Ingamas O, Lundstrom I (1995) Controlled folding of micrometer-size structures. Science 268(5218):1735–1738

    Article  Google Scholar 

  16. Smela E, Kallenbach M, Holdenried J (1999) Electrochemically driven polypyrrole bilayers for moving and positioning bulk micromachined silicon plates. IEEE J Microelectromech Syst 8(4):373–383

    Article  Google Scholar 

  17. Jager EWH et al (2002) The cell clinic: closable microvials for single cell studies. Biomed Microdevices 4(3):177–187

    Article  Google Scholar 

  18. Kontturi K, Pentti P, Sundholm G (1998) Polypyrrole as a model membrane for drug delivery. J Electroanal Chem 453(1–2):231–238

    Article  Google Scholar 

  19. Kontturi K et al (1998) Preparation and properties of a pyrrole-based ion-gate membrane as studied by the EQCM. Synth Met 92(2):179–185

    Article  Google Scholar 

  20. Sato M-A, Tanaka S, Kaeriyama K (1986) Electrochemical preparation of conducting poly(3-methylthiophene): comparison with polythiophene and poly(3-ethylthiophene). Synth Met 14(4):279–288

    Article  Google Scholar 

  21. Andreatta A et al (1988) Electrically-conductive fibers of polyaniline spun from solutions in concentrated sulfuric acid. Synth Met 26(4):383–389

    Article  Google Scholar 

  22. Mottaghitalab V (2006) Development and characterisation of polyaniline – carbon nanotube conducting composite fibres. University of Wollongong, Wollongong

    Google Scholar 

  23. Chacko AP et al (1997) Viscoelastic characterization of concentrated polyaniline solutions: new insights into conductive polymer processing. Synth Met 84(1–3):41–44

    Article  Google Scholar 

  24. Gregory RV et al (2012) Synthesis and characterization of high molecular weight polyaniline for organic electronic applications. Polym Eng Sci 52(8):1811

    Google Scholar 

  25. Hsu CH, Cohen JD, Tietz RF (1993) Polyaniline spinning solutions and fibers. Synth Met 59(1):37–41

    Article  Google Scholar 

  26. Pomfret SJ et al (1998) Inherently electrically conductive fibers wet spun from a sulfonic acid–doped polyaniline solution. Adv Mater 10(16):1351–1353

    Article  Google Scholar 

  27. Hsu CH et al (1999) High tenacity, high modulus conducting polyaniline composite fibers. Synth Met 101(1–3):677–680

    Article  Google Scholar 

  28. Hsu C-H, Vaca-Segonds P, Epstein AJ (1991) Polyaniline/PPD-T fibers. Synth Met 41(3):1005–1008

    Article  Google Scholar 

  29. Zhang Q et al (2001) Morphology of conductive blend fibers of polyaniline and polyamide-11. Synth Met 123(3):481–485

    Article  Google Scholar 

  30. Zhang Q et al (2002) Preparation and properties of conductive polyaniline/poly-omega-aminoundecanoyle fibers. J Appl Polym Sci 85(7):1458–1464

    Article  Google Scholar 

  31. Mottaghitalab V, Spinks GM, Wallace GG (2006) The development and characterisation of polyaniline – single walled carbon nanotube composite fibres using 2-acrylamido-2 methyl-1-propane sulfonic acid (AMPSA) through one step wet spinning process. Polymer 47(14):4996–5002

    Article  Google Scholar 

  32. Mottaghitalab V, Spinks GM, Wallace GG (2005) The influence of carbon nanotubes on mechanical and electrical properties of polyaniline fibers. Synth Met 152(1–3):77–80

    Article  Google Scholar 

  33. Foroughi J, Spinks GM, Wallace GG (2010) Nanotechnology and Conducting Polymer Fibre: Towards the Development of Nano-Structured Conducting Polymers and Nano-Composite Fibres. Lambert Academic Publishing, Saarbrucken, Germany

    Google Scholar 

  34. Foroughi J et al (2008) Production of polypyrrole fibres by wet spinning. Synth Met 158(3–4):104–107

    Article  Google Scholar 

  35. Foroughi J, Spinks GM, Wallace GG (2009) Effect of synthesis conditions on the properties of wet spun polypyrrole fibres. Synth Met 159(17–18):1837–1843

    Article  Google Scholar 

  36. Foroughi J, Spinks GM, Wallace GG (2011) A reactive wet spinning approach to polypyrrole fibres. J Mater Chem 21(17):6421–6426

    Article  Google Scholar 

  37. Foroughi J et al (2012) Preparation and characterization of hybrid conducting polymer-carbon nanotube yarn. Nanoscale 4(3):940–945

    Article  Google Scholar 

  38. Okuzaki H, Ishihara M (2003) Spinning and characterization of conducting microfibers. Macromol Rapid Commun 24(3):261–264

    Article  Google Scholar 

  39. Okuzaki H, Harashina Y, Yan H (2009) Highly conductive PEDOT/PSS microfibers fabricated by wet-spinning and dip-treatment in ethylene glycol. Eur Polym J 45(1):256–261

    Article  Google Scholar 

  40. Jalili R et al (2011) One-step wet-spinning process of poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) fibers and the origin of higher electrical conductivity. Adv Funct Mater 21(17):3363–3370

    Article  Google Scholar 

  41. Jalili R, Razal JM, Wallace GG (2012) Exploiting high quality PEDOT:PSS-SWNT composite formulations for wet-spinning multifunctional fibers. J Mater Chem 22(48):25174–25182

    Article  Google Scholar 

  42. Liu Y, Li X, Lü JC (2013) Electrically conductive poly(3,4-ethylenedioxythiophene)–polystyrene sulfonic acid/polyacrylonitrile composite fibers prepared by wet spinning. J Appl Polym Sci 130:370–374

    Article  Google Scholar 

  43. Kim JH, Sharma AK, Lee YS (2006) Synthesis of polypyrrole and carbon nano-fiber composite for the electrode of electrochemical capacitors. Mater Lett 60(13–14):1697

    Article  Google Scholar 

  44. Hacarlioglu P, Toppare L, Yilmaz L (2003) Polycarbonate-polypyrrole mixed matrix gas separation membranes. J Membr Sci 225(1–2):51

    Article  Google Scholar 

  45. Walkiewicz S, Michalska A, Maksymiuk K (2005) Sensitivity and selectivity of polypyrrole based AC-amperometric sensors for electroinactive ions – frequency and applied potential influence. Electroanalysis 17(14):1269

    Article  Google Scholar 

  46. Han G et al (2005) Electrodeposition of polypyrrole/multiwalled carbon nanotube composite films. Thin Solid Films 474(1–2):64

    Article  Google Scholar 

  47. Kim MS et al (2002) PET fabric/polypyrrole composite with high electrical conductivity for EMI shielding. Synth Met 126(2–3):233

    Article  Google Scholar 

  48. Yavuz O et al (2005) Polypyrrole composites for shielding applications. Synth Met 151(3):211

    Article  Google Scholar 

  49. Spinks GM et al (2009) Conjugated polymer actuators: fundamentals. In: Biomedical applications of electroactive polymer actuators. Wiley, Chichester, pp 193–227

    Chapter  Google Scholar 

  50. Foroughi J, Spinks GM, Wallace GG (2011) High strain electromechanical actuators based on electrodeposited polypyrrole doped with di-(2-ethylhexyl)sulfosuccinate. Sens Actuators B 155(1):278–284

    Article  Google Scholar 

  51. Ding J et al (2003) Use of ionic liquids as electrolytes in electromechanical actuator systems based on inherently conducting polymers. Chem Mater 15(12):2392–2398

    Article  Google Scholar 

  52. Spinks G (2012) Microdevices muscle up. Australas Sci 19–21, Australia

    Google Scholar 

  53. Wallace GG et al (2012) Organic conducting polymers. In: Organic bionics. Wiley-VCH, Weinheim, pp 81–112

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javad Foroughi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Singapore

About this entry

Cite this entry

Foroughi, J., Spinks, G.M., Wallace, G.G. (2015). Conducting Polymer Fibers. In: Tao, X. (eds) Handbook of Smart Textiles. Springer, Singapore. https://doi.org/10.1007/978-981-4451-45-1_14

Download citation

Publish with us

Policies and ethics