Skip to main content

Ultrasonic Applications for Food Dehydration

  • Reference work entry
  • First Online:
Handbook of Ultrasonics and Sonochemistry

Abstract

Food dehydration is a one of the oldest preservation methods based on simultaneous heat and mass transfer. The aim of the method is to remove the water from the food for prolonged shelf life by using an appropriate process. However, in the process of removing water from the food, there are practical difficulties due to the slow mass transfer that occurs in foods, depending on the food matrix and treatment conditions. Therefore, an ultrasonic treatment can be used in the dehydration process to increase the rate of mass transfer and to overcome these difficulties. At the same time, the rehydration properties of the dried foods can be improved by using ultrasonic wave creating microscopic channels, which may make moisture removal and gain easier. The treatment has been used to obtain high drying rates at the same temperatures or adequate drying rates at lower temperatures. In general, it has been used as different methods, such as ultrasound-assisted convective dehydration, ultrasound-assisted osmotic dehydration, ultrasound-assisted vacuum dehydration, and ultrasound-assisted freeze dehydration. The ultrasound has been used together with a dehydration process or as pretreatment in the methods as direct or indirect contact. In addition, other application- and apparatus-based ultrasound treatments have been improved during the dehydration process to enhance food quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mulet A, Carcel JA, Sanjuan N, Bon J (2003) Food Sci Technol Int 9(3):215

    Article  Google Scholar 

  2. Mulet A, Cárcel JA, García-Pérez JV, Riera E (2011) In: Feng H, Barbosa-Canovas G, Weiss J (eds) Ultrasound technologies for food and bioprocessing. Springer, New York, p 511

    Chapter  Google Scholar 

  3. Kiani H, Zhang L, Sun D (2014) Ultrasonic assistance for food freezing. In: Sun D-W (ed) Emerging technologies for food processing. Elsevier, Oxford, pp 498–500

    Google Scholar 

  4. Fernandes FAN, Gallao MI, Rodrigues S (2008) Effect of osmotic dehydration and ultrasound pre-treatment on cell structure: melon dehydration. LWT 41:604–610

    Article  CAS  Google Scholar 

  5. Gamboa-Santos J, Montilla A, Cárcel JA, Villamiel M, Garcia-Perez JV (2014) Air-borne ultrasound application in the convective drying of strawberry. J Food Eng 128:132–139

    Article  Google Scholar 

  6. Beck SM, Sabarez H, Gaukel V, Knoerzer K (2014) Enhancement of convective drying by application of airborne ultrasound – a response surface approach. Ultrason Sonochem 21(6):2144–2150

    Article  CAS  Google Scholar 

  7. Fernandes FAN, Rodrigues S (2007) Ultrasound as pre-treatment for drying of fruits: dehydration of banana. J Food Eng 82:261–267

    Article  Google Scholar 

  8. Fernandes FAN, Gallao MI, Rodrigues S (2009) Effect of osmosis and ultrasound on pineapple cell tissue structure during dehydration. J Food Eng 90:186–190

    Article  Google Scholar 

  9. Garcia-Noguera J, Oliveira FIP, Gallao MI, Weller CL, Rodrigues S, Fernandes FAN (2010) Ultrasound-assisted osmotic dehydration of strawberries: effect of pretreatment time and ultrasonic frequency. Drying Technol 28:294–303

    Article  Google Scholar 

  10. Nowacka M, Tylewicz U, Laghi L, Dalla Rosa M, Witrowa-Rajchert D (2014) Effect of ultrasound treatment on the water state in kiwifruit during osmotic dehydration. Food Chem 144:18–25

    Article  CAS  Google Scholar 

  11. Xin Y, Zhang M, Adhikari B (2013) Effect of trehalose and ultrasound-assisted osmotic dehydration on the state of water and glass transition temperature of broccoli (Brassica oleracea L. var. botrytis L.). J Food Eng 119:640–647

    Article  CAS  Google Scholar 

  12. Başlar M, Kılıçlı M, Yalınkılıç B (2015) Dehydration kinetics of salmon and trout fillets using ultrasonic vacuum drying as a novel technique. Ultrason Sonochem 27:495–502

    Article  Google Scholar 

  13. Başlar M, Kılıçlı M, Toker O, Sağdıç O, Arici M (2014) Ultrasonic vacuum drying technique as a novel process for shortening the drying period for beef and chicken meats. Innovative Food Sci Emerg Technol 26:182

    Article  Google Scholar 

  14. He Z, Yang F, Peng Y, Yi S (2013) Ultrasound assisted vacuum drying of wood effects on drying time and product quality. BioResources 8(1):855–863

    Article  CAS  Google Scholar 

  15. He Z, Yang F, Peng Y, Yi S (2013) Effects of ultrasound on wood vacuum drying characteristics. Pro Ligno 9(4):693–699

    Google Scholar 

  16. García-Pérez JV, Cárcel JA, De La Fuente-Blanco S, Riera-Franco De Sarabia E (2006) Ultrasonic drying of foodstuff in a fluidized bed: parametric study. Ultrasonics 44:539–e543

    Article  Google Scholar 

  17. Santacatalina JV, Cárcel JA, Simal S, Garcia-Perez JV, Mulet A (2012) Atmospheric freeze drying assisted by power ultrasound. In: International symposium on ultrasound in the control of industrial processes. Madrid

    Google Scholar 

  18. Schössler K, Jäger H, Knorr D (2012) Effect of continuous and intermittent ultrasound on drying time and effective diffusivity during convective drying of apple and red bell pepper. J Food Eng 108(1):103–110

    Article  Google Scholar 

  19. Gogate PR (2015) The use of ultrasonic atomization for encapsulation and other processes in food and pharmaceutical manufacturing. In: Gallego-Juárez JA, Graff KF (eds) Power ultrasonics: applications of high-intensity ultrasound. Woodhead Publishing, Cambridge, pp 911–913

    Google Scholar 

  20. D’Addioa SM, Chana JGY, Kwoka PCL, Prud’homme RK, Chana HK (2012) Constant size, variable density aerosol particles by ultrasonic spray freeze drying. Int J Pharm 427:185–191

    Article  Google Scholar 

  21. Fernandes FAN, Linhares FE Jr, Rodrigues S (2008) Ultrasound as pre-treatment for drying of pineapples. Ultrason Sonochem 15(6):1049–1054

    Article  CAS  Google Scholar 

  22. Bantle M, Eikevik TM (2014) A study of the energy efficiency of convective drying systems assisted by ultrasound in the production of clipfish. J Clean Prod 65:217–223

    Article  Google Scholar 

  23. Goyal RK, Kingsly ARP, Manikantan MR, Ilyas SM (2006) Thin-layer drying kinetics of raw mango slices. Biosyst Eng 95(1):43–49

    Article  Google Scholar 

  24. Villa-Corrales L, Flores-Prieto JJ, Xamán-Villaseñor JP, García-Hernández E (2010) Numerical and experimental analysis of heat and moisture transfer during drying of Ataulfo mango. J Food Eng 98(2):198–206

    Article  Google Scholar 

  25. Rossello C, Simal S, SanJuan N, Mulet A (1997) Nonisotropic mass transfer model for green bean drying. J Agric Food Chem 45(2):337–342

    Article  CAS  Google Scholar 

  26. Simal S, Sánchez ES, Bon J, Femenia A, Rosselló C (2001) Water and salt diffusion during cheese ripening: effect of the external and internal resistances to mass transfer. J Food Eng 48:269–275

    Article  Google Scholar 

  27. Chou SK, Chua KJ (2001) New hybrid drying technologies for heat sensitive foodstuffs. Trends Food Sci Technol 12:359–369

    Article  Google Scholar 

  28. Mousa N, Farid M (2002) Microwave vacuum drying of banana slices. Drying Technol 20(10):2055–2066

    Article  Google Scholar 

  29. Abbasi S, Azari S (2009) Novel microwave-freeze drying of onion slices. Int J Food Sci Technol 44:974–979

    Article  CAS  Google Scholar 

  30. Sabarez HT, Gallego-Juarez JA, Riera E (2012) Ultrasonic-assisted convective drying of apple slices. Drying Technol 30(9):989–997

    Article  Google Scholar 

  31. Dev SRS, Geetha P, Orsat V, Gariepy Y, Raghavan GSV (2011) Effects of microwave-assisted hot air drying and conventional hot air drying on the drying kinetics, color, rehydration, and volatiles of Moringa oleifera. Drying Technol 29(12):1452–1458

    Article  CAS  Google Scholar 

  32. Kowalski SJ, Mierzwa D (2015), Ultrasound-assisted convective drying of biological materials. Drying Technol 33(13):1601–1613

    Google Scholar 

  33. Bantle M, Eikevik TM (2011) Parametric study of high-intensity ultrasound in the atmospheric freeze drying of peas. Drying Technol 29(10):1230–1239

    Article  Google Scholar 

  34. Gallego-Juarez JA, Riera E, Blanco SD, Rodriguez-Corral G, Acosta-Aparicio VM, Blanco A (2007) Application of high-power ultrasound for dehydration of vegetables: processes and devices. Drying Technol 25(11):1893–1901

    Article  Google Scholar 

  35. Rodriguez J, Melo EC, Mulet A, Bon J (2013) Optimization of the antioxidant capacity of thyme (Thymus vulgaris L.) extracts: management of the convective drying process assisted by power ultrasound. J Food Eng 119(4):793–799

    Article  CAS  Google Scholar 

  36. Sledz M, Wiktor A, Rybak K, Nowacka M, Rajchert DW (2015) The impact of ultrasound and steam blanching pre-treatments on the drying kinetics, energy consumption and selected properties of parsley leaaves. Appl Acoust. doi:10.1016/j.apacoust.2015.05.006

    Google Scholar 

  37. Fernandes FAN, Oliveira FIP, Rodrigues S (2008) Use of ultrasound for dehydration of papayas. Food Bioprocess Technol 1:339–345

    Article  Google Scholar 

  38. Nowacka M, Wiktor A, Śledź M, Jurek N, Witrowa-Rajchert D (2012) Drying of ultrasound pretreated apple and its selected physical properties. J Food Eng 113(3):427–433

    Article  Google Scholar 

  39. Puig A, Perez-Munuera I, Carcel JA, Hernando I, Garcia-Perez JV (2012) Moisture loss kinetics and microstructural changes in eggplant (Solanum melongena L.) during conventional and ultrasonically assisted convective drying. Food Bioprod Process 90(4):624–632

    Article  Google Scholar 

  40. Bantle M, Hanssler J (2013) Ultrasonic convective drying kinetics of clipfish during the initial drying period. Drying Technol 31(11):1307–1316

    Article  CAS  Google Scholar 

  41. Forero DP, Orrego CE, Peterson DG, Osorio C (2015) Chemical and sensory comparison of fresh and dried lulo (Solanum quitoense Lam.) fruit aroma. Food Chem 169:85

    Article  CAS  Google Scholar 

  42. Ponting JD, Watters GG, Forrey GG, Jackson RR, Stanley R (1966) Osmotic dehydration of fruits. Food Technol 20:125–131

    CAS  Google Scholar 

  43. Chiralt A, Talens P (2005) Physical and chemical changes induced by osmotic dehydration in plant tissues. J Food Eng 67:167–177

    Article  Google Scholar 

  44. Shi J, Xue SJ (2009) Application and development of osmotic dehydration technology. In: Ratti C (ed) Food processing, in advances in food dehydration. CRC press, Boca Raton, pp 187–205

    Google Scholar 

  45. Rastogi NK, Raghavarao KSMS (2004) Mass transfer during osmotıc dehydratıon determination of moisture and solute diffusion coefficients from concentration profiles. Food Bioprod Process 82(C1):44–48

    Article  Google Scholar 

  46. Azoubel PM, Murr FEX (2004) Mass transfer kinetics of osmotic dehydration of cherry tomato. J Food Eng 61:291–295

    Article  Google Scholar 

  47. Torreggiani D, Bertolo G (2001) Osmotic pre-treatments in fruit processing: chemical, physical and structural effects. J Food Eng 49:247–253

    Article  Google Scholar 

  48. Chwastek A (2014) Methods to increase the rate of mass transfer during osmotic dehydration of foods. Acta Sci Pol Technol Aliment 13(4):341–350

    Article  Google Scholar 

  49. Chemat F, Huma Z, Khan MK (2011) Applications of ultrasound in food technology: processing, preservation and extraction. Ultrason Sonochem 18:813–835

    Article  CAS  Google Scholar 

  50. Rastogi NK, Raghavarao KSMS, Niranjan K, Knorr D (2002) Recent developments in osmotic dehydration: methods to enhance mass transfer. Trends Food Sci Technol 13:48–59

    Article  CAS  Google Scholar 

  51. Shamaei S, Emam-Djomeh Z, Moini S (2011) Ultrasound-assisted osmotic dehydration of cranberries: effect of finish drying methods and ultrasonic frequency on textural properties. J Texture Stud. ISSN 0022–4901 43(2):133–141

    Google Scholar 

  52. Fernandes FAN, Rodrigues S (2008) Application of ultrasound and ultrasound-assisted osmotic dehydration in drying of fruits. Drying Technol 26(12):1509–1516

    Article  CAS  Google Scholar 

  53. Mothibe KJ, Zhang M, Nsor-atindana J, Wang YC (2011) Use of ultrasound pretreatment in drying of fruits: drying rates, quality attributes, and shelf life extension. Drying Technol 29:1611–1621

    Article  CAS  Google Scholar 

  54. Simal S, Benedito J, Sánchez ES, Rossello C (1998) Use of ultrasound to increase mass transport rates during osmotic dehydration. J Food Eng 36:323–336

    Article  Google Scholar 

  55. Fernandes FAN, Rodrigues S, Law CL, Mujumdar AS (2011) Drying of exotic tropical fruits: a comprehensive review. Food Bioprocess Technol 4:163–185

    Article  Google Scholar 

  56. Nowacka M, Tylewicz U, Balestra F, Rosa MD, Witrowa-Rajcherta D (2013) Microstructure changes of osmodehydrated kiwifruit sliced pretreated with ultrasound. In: Inside food symposium, Materiały Konferencyjne, 16. Leuven, 9–12 Apr 2013

    Google Scholar 

  57. Arevalo-Pinedo A, Murr FEX (2006) Kinetics of vacuum drying of pumpkin (Cucurbita maxima): modeling with shrinkage. J Food Eng 76:562–567

    Article  Google Scholar 

  58. Wu L, Orikasa T, Ogawa Y, Tagawa A (2007) Vacuum drying characteristics of eggplants. J Food Eng 83:422–429

    Article  Google Scholar 

  59. Ferenczi S, Czukor B, Cserhalmi Z (2014) Evaluation of microwave vacuum drying combined with hot-air drying and compared with freeze- and hot-air drying by the quality of the dried apple product. Period Polytech Chem Eng 58(2):111–116. doi:10.3311/PPch.7082

    Google Scholar 

  60. Mujumdar A (1987) Handbook of industrial drying. M. Dekker, New York, pp 156–157

    Google Scholar 

  61. Brown M (1999) Focusing on freeze-drying. Food Manuf 74(9):34–36

    Google Scholar 

  62. Kudra T, Mujumdar A (2002) Sonic drying. In: Advanced drying technologies. Marcel Dekker, New York

    Google Scholar 

  63. Ratti C (2009) Advances in food dehydration. CRC Press, Baco Raton, p 17

    Google Scholar 

  64. Chen X, Mujumdar A (2008) Drying technologies in food processing. Blackwell, Oxford, pp 225–232

    Google Scholar 

  65. Devahastin S, Suvarnakuta P, Soponronnarit S, Mujumdar AS (2004) A comparative study of low-pressure superheated steam and vacuum drying of a heat-sensitive material. Drying Technol 22:1845–1867

    Article  Google Scholar 

  66. Gunasekaran S (1999) Pulsed microwave-vacuum drying of food materials. Drying Technol 17(3):395–412. doi:10.1080/07373939908917542

    Article  Google Scholar 

  67. Thomkapanich O, Suvarnakuta P, Devahastin S (2007) Study of intermittent low-pressure superheated steam and vacuum drying of a heat-sensitive material. Drying Technol 25(1):205–223. doi:10.1080/07373930601161146

    Article  CAS  Google Scholar 

  68. Avramidis S, Liu M, Neilson BJ (1994) Radio-frequency/vacuum drying of softwoods: drying of thick western red cedar with constant electrode voltage. For Prod J 44(1):41–47

    Google Scholar 

  69. Kanagawa Y, Yasujima M (1993) Effect of heat sources on drying time in vacuum drying of wood, International Conference on Wood Drying. Zvolen; Slovakia 292:164

    Google Scholar 

  70. Cohen JS, Yang TCS (1995) Progress in food dehydration. Trends Food Sci Technol 6(1):20–25

    Article  CAS  Google Scholar 

  71. Tarleton ES (1992) The role of field-assisted techniques in solid/liquid separation. Filtr Sep 3:246–253

    Article  Google Scholar 

  72. Fuente-Blanco S, Sarabia ERF, Acosta-Aparicio VM, Blanco- Blanco A, Gallego- Jua’rez JA (2006) Food drying process by power ultrasound. Ultrason Sonochem 44:523–527

    Article  Google Scholar 

  73. Zhao F, Chen ZQ (2011) Numerical study on moisture transfer in ultrasound-assisted convective drying process of sludge. Drying Technol 29:1404–1415

    Article  Google Scholar 

  74. Carcel JA, Garcia-Perez JV, Riera E, Mulet A (2011) Improvement of convective drying of carrot by applying power ultrasound-influence of mass load density. Drying Technol 29:174–182

    Article  CAS  Google Scholar 

  75. Aversa M, Van der Voort AJ, De Heij W, Tournois B, Curcio S (2011) An experimental analysis of acoustic drying of carrots: evaluation of heat transfer coefficients in different drying conditions. Drying Technol 29:239–244

    Article  Google Scholar 

  76. Jangam SV (2011) An overview of recent developments and some R&D challenges related to drying of foods. Drying Technol 29:1343–1357

    Article  Google Scholar 

  77. Gong C, Hart DP (1998) Ultrasound induced cavitation and sonochemical yields. J Acoust Soc Am 104(5):2675–2682

    Google Scholar 

  78. Santos HM, Lodeiro C, Capelo- Martinez J-L (2009) The power of ultrasound. In: Ultrasound in chemistry: analytical applications. Weinheim, Wiley

    Google Scholar 

  79. Ashokkumar M (2011) Theoretical and experimental sonochemistry involving inorganic systems. Springer, Dordrecht, pp 2–5

    Book  Google Scholar 

  80. He Z, Yang F, Yi S, Yi S, Gao J (2012) Effect of ultrasound pretreatment on vacuum drying of Chinese catalpa wood. Drying Technol 30(15):1750–1755. doi:10.1080/07373937.2012.713420

    Article  Google Scholar 

  81. Akpinar EK, Bicer Y, Midilli A (2003) Modeling and experimental study on drying of apple slices in a convective cyclone dryer. J Food Process Eng 26:515–554

    Article  Google Scholar 

  82. Doymaz I (2013) Experimental study on drying of pear slices in a convective dryer. Int J Food Sci Technol 48:1909–1915

    Article  CAS  Google Scholar 

  83. Guiné RPF, Ferreira DMS, Barroca MJ, Gonçalves FM (2007) Study of the drying kinetics of solar-dried pears. Biosyst Eng 98:422–429

    Article  Google Scholar 

  84. Falade KO, Solademi OJ (2010) Modelling of air drying of fresh and blanched sweet potato slices. Int J Food Sci Technol 45:278–288

    Article  CAS  Google Scholar 

  85. Barbosa-Canovas GV, Vega-Mercado H (1996) Dehydration of foods. Chapman & Hall, New York

    Book  Google Scholar 

  86. Nakagawa K, Ochiai T (2015) A mathematical model of multi-dimenisonal freeze-drying for food products. J Food Eng 161:55–67

    Article  Google Scholar 

  87. Ratti C (2001) Hot air and freeze-drying of high-value foods: a review. J Food 49(4):311–319

    Google Scholar 

  88. Bell GA, Mellor JD (1990) Further developments in adsorption freeze-drying. CSIRO Food Res Q 50:48–53

    Google Scholar 

  89. Lombraña JI, Elvira CD, Villarán MC (1997) Analysis of operating strategies in the production of special foods in vials by freeze drying. Int J Food Sci Technol 32:107–115

    Article  Google Scholar 

  90. Santacatalina JV, Fissore D, Cárcel JA, Mulet A, García-Pérez JV (2015) Model-based investigation into atmospheric freeze drying assisted by power ultrasound. J Food Eng 151:7–15

    Article  Google Scholar 

  91. Feng H, Yang W (2011) Ultrasonic processing. Nonthermal processing technologies for food, In Eds: HQ Zhang, GV Barbosa-Cánovas, VMB Balasubramaniam, CP Dunne, DF Farkas, JTC Yuan. Blackwell Publishing, USA

    Google Scholar 

  92. Rastogi NK, Raghavarao KSMS, Niranjan K (2005) Developments in osmotic dehydration. Emerging technologies for food processing, Academic press 221–249

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Başlar .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this entry

Cite this entry

Başlar, M., Toker, Ö.S., Karasu, S., Tekin, Z.H., Biranger Yildirim, H. (2016). Ultrasonic Applications for Food Dehydration. In: Handbook of Ultrasonics and Sonochemistry. Springer, Singapore. https://doi.org/10.1007/978-981-287-278-4_64

Download citation

Publish with us

Policies and ethics