Skip to main content

Degradation of Organic Micropollutants by Hydrodynamic and/or Acoustic Cavitation

  • Reference work entry
  • First Online:

Abstract

In recent years, micropollutants have become an emerging issue in natural water bodies, especially in industrialized countries. To treat those micropollutants, different advanced oxidation processes were developed and optimized. Some of the advanced oxidation processes need additional chemicals (catalysts, oxidation agents, pH control), which have to be separated, (re)activated, or degraded after the treatment process often followed by a neutralization step accompanied with high salt loads. Cavitation processes belong to the group of advanced oxidation processes, due to the formation of highly reactive hydroxyl radicals by the homolytic cleavage of water molecules in the cavitation bubbles. Cavitation processes do not need any additional chemicals and do not rely on the salt content or turbidity. Moreover, the formation of hydroxyl radicals takes place in the whole volume of the treated water and is not restricted to a specific surface. However, the energy demand of cavitation processes is higher compared to other advanced oxidation processes. Therefore, new cavitation-based processes have to be developed to overcome the disadvantages. One possibility is the use of a combination of hydrodynamic and acoustic cavitation in one reactor, the so-called hydrodynamic-acoustic-cavitation. Within this, the effect of different parameters on the hydroxyl radical formation within a HAC setup is discussed and compared with literature data. Therefore, the oxidation of salicylic acid via hydroxyl radicals was used as model reaction (salicylic acid dosimetry). Moreover, a comparison concerning the synergy and the energy efficiency was done and research desiderata were derived.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Schwarzenbach RP, Escher BI et al (2006) The challenge of micropollutants in aquatic systems. Science 313:1072

    Article  CAS  Google Scholar 

  2. Kümmerer K (2008) Pharmaceuticals in the environment. Springer, Berlin

    Book  Google Scholar 

  3. Heberer T (2002) Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data. Toxicol Lett 131:5

    Article  CAS  Google Scholar 

  4. Ternes TA (1998) Occurrence of drugs in German sewage treatment plants and rivers. Water Res 32:3245

    Article  CAS  Google Scholar 

  5. Stumpf M, Ternes TA et al (1999) Polar drug residues in sewage and natural waters in the state of Rio de Janeiro, Brazil. Sci Total Environ 225:135

    Article  Google Scholar 

  6. Vieno N, Sillanpää M (2014) Fate of diclofenac in municipal wastewater treatment plant – a review. Environ Int 69:28

    Article  CAS  Google Scholar 

  7. Bergmann A, Fohrmann R et al (2011) Zusammenstellung von Monitoringdaten zu Umweltkonzentrationen von Arzneimitteln. Umweltbundesamt, Dessau-Roßlau

    Google Scholar 

  8. Galic N, Hommen U et al (2010) Potential application of population models in the European ecological risk assessment of chemicals II: review of models and their potential to address environmental protection aims. Integr Environ Assess Manag 6:338

    Article  CAS  Google Scholar 

  9. Baquero F, Martínez J-L et al (2008) Antibiotics and antibiotic resistance in water environments. Curr Opin Biotechnol 19:260

    Article  CAS  Google Scholar 

  10. Kidd KA, Blanchfield PJ et al (2007) Collapse of a fish population after exposure to a synthetic estrogen. Proc Natl Acad Sci U S A 104:8897

    Article  CAS  Google Scholar 

  11. Yüksel S, Kabay N et al (2013) Removal of bisphenol A (BPA) from water by various nanofiltration (NF) and reverse osmosis (RO) membranes. J Hazard Mater 263:307

    Article  Google Scholar 

  12. Quinlivan PA, Li L et al (2005) Effects of activated carbon characteristics on the simultaneous adsorption of aqueous organic micropollutants and natural organic matter. Water Res 39:1663

    Article  CAS  Google Scholar 

  13. Hata T, Shintate H et al (2010) Elimination of carbamazepine by repeated treatment with laccase in the presence of 1-hydoxybenzotriazole. J Hazard Mater 181:1175

    Article  CAS  Google Scholar 

  14. Prieto-Rodriguez L, Miralles-Cuevas S et al (2012) Treatment of emerging contaminants in wastewater treatment plants (WWTP) effluents by solar photocatalysis using low TiO2 concentrations. J Hazard Mater 131:211

    Google Scholar 

  15. Sirés I, Brillas E et al (2014) Electrochemical advanced oxidation processes: today and tomorrow. A review. Environ Sci Pollut Res 21:8336

    Article  Google Scholar 

  16. Andreozzi R, Caprio V et al (1999) Advanced oxidation processes (AOP) for water purification and recovery. Catal Today 53:51

    Article  CAS  Google Scholar 

  17. Chong MN, Jin B et al (2010) Recent developments in photocatalytic water treatment technology: a review. Water Res 44:1997

    Article  Google Scholar 

  18. Neyens E, Baeyens J (2003) A review of classic Fenton’s peroxidation as an advanced oxidation technique. J Hazard Mater 98:33

    Article  CAS  Google Scholar 

  19. Cater SR, Stefan MI et al (2000) UV/H2O2 treatment of methyl tert-butyl ether in contaminated waters. Environ Sci Technol 34:659

    Article  CAS  Google Scholar 

  20. Lifka J, Ondruschka B et al (2003) The use of ultrasound for the degradation of pollutants in water: aquasonolysis – a review. Eng Life Sci 3:253

    Article  CAS  Google Scholar 

  21. Mahamuni NN, Adewuyi YG (2010) Advanced oxidation processes (AOPs) involving ultrasound for waste water treatment: a review with emphasis on cost estimation. Ultrason Sonochem 17:990

    Article  CAS  Google Scholar 

  22. Suslick KS (1989) Sci Am 260:80

    Article  CAS  Google Scholar 

  23. Didenko YT, McNamara WB III et al (1999) Hot spot conditions during cavitation in water. J Am Chem Soc 121:5817

    Article  CAS  Google Scholar 

  24. Braeutigam P, Franke M et al (2010) Role of different parameters in the optimization of hydrodynamic cavitation. Chem Eng Technol 33:932

    Article  CAS  Google Scholar 

  25. Arrojo S, Nerin C et al (2007) Application of salicylic acid dosimetry to evaluated hydrodynamic cavitation as an advanced oxidation process. Ultrason Sonochem 14:343

    Article  CAS  Google Scholar 

  26. Braeutigam P, Wu Z-L et al (2009) Degradation of BTEX in aqueous solution by hydrodynamic cavitation. Chem Eng Technol 32:745

    Article  CAS  Google Scholar 

  27. Gogate PR, Pandit AB (2004) Sonochemical reactors: scale up aspects. Ultrason Sonochem 11:105

    Article  CAS  Google Scholar 

  28. Kumar PS, Pandit AB (1999) Modelling hydrodynamic cavitation. Chem Eng Technol 22:1017

    Article  CAS  Google Scholar 

  29. Moholkar VS, Senthil Kumar P et al (1999) Hydrodynamic cavitation for sonochemical effects. Ultrason Sonochem 6:53

    Article  CAS  Google Scholar 

  30. Gogate PR, Pandit AB (2005) A review and assessment of hydrodynamic cavitation as a technology for the future. Ultrason Sonochem 12:21

    Article  CAS  Google Scholar 

  31. Amin LP, Gogate PR et al (2010) Optimization of a hydrodynamic cavitation reactor using salicylic acid dosimetry. Chem Eng J 156:165

    Article  CAS  Google Scholar 

  32. Senthil Kumar P, Siva Kumar M et al (2000) Experimental quantification of chemical effects of hydrodynamic cavitation. Chem Eng Sci 55:1633

    Article  Google Scholar 

  33. Suslick KS, Mdleleni MM et al (1997) Chemistry induced by hydrodynamic cavitation. J Am Chem Soc 119:9303

    Article  CAS  Google Scholar 

  34. Gogate PR, Pandit AB (2004) A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions. Adv Environ Res 8:553

    Article  CAS  Google Scholar 

  35. Jyoti KK, Pandit AB (2003) Hybrid cavitation methods for water disinfection. Biochem Eng J 14:9

    Article  CAS  Google Scholar 

  36. Franke M, Braeutigam P et al (2011) Enhancement of chloroform degradation by the combination of hydrodynamic and acoustic cavitation. Ultrason Sonochem 18:888

    Article  CAS  Google Scholar 

  37. Braeutigam P, Franke M et al (2012) Degradation of carbamazepin in environmentally relevant concentrations in water by Hydrodynamic-Acoustic-Cavitation (HAC). Water Res 46:2469

    Article  CAS  Google Scholar 

  38. Vichare NP, Gogate PR et al (2000) Optimization of hydrodynamic cavitation using a model reaction. Chem Eng Technol 23:683

    Article  CAS  Google Scholar 

  39. Gogate PR, Pandit AB (2000) Engineering design methods for cavitation reactors II: hydrodynamic cavitation. AIChE J 46:1641

    Article  CAS  Google Scholar 

  40. Iben U, Wolf F et al (2015) Optical measurements of gas bubbles in oil behind a cavitating micro-orifice flow. Exp Fluids 56:114

    Article  Google Scholar 

  41. Brotchie A, Grieser F et al (2009) Effect of power and frequency on bubble-size distributions in acoustic cavitation. Phys Rev Lett 102:084302

    Article  Google Scholar 

  42. Mason TJ, Lorimer JP (2002) Applied sonochemistry: the uses of power ultrasound in chemistry and processing, vol 42. Wiley-VCH, Weinheim

    Book  Google Scholar 

  43. Neppiras EA (1980) Acoustic cavitation. Phys Rep 61:159

    Article  Google Scholar 

  44. Entezari MH, Kruus P (1996) Effect of frequency on sonochemical reactions II. Temperature and intensity effects. Ultrason Sonochem 3:19

    Article  CAS  Google Scholar 

  45. Yang L, Rathman JF et al (2005) Degradation of alkylbenzene sulfonate surfactants by pulsed ultrasound. J Phys Chem B 109:16203

    Article  CAS  Google Scholar 

  46. Henglein A (1995) Chemical effects of continuous and pulsed ultrasound in aqueous solutions. Ultrason Sonochem 2:115

    Article  Google Scholar 

  47. Bagal MV, Gogate PR (2014) Degradation of diclofenac sodium using combined processes based on hydrodynamic cavitation and heterogeneous photocatalysis. Ultrason Sonochem 21:1035

    Article  CAS  Google Scholar 

  48. Keil T, Buttenbender J et al (2012) On the transition from sheet to cloud cavitation. In: Proceedings of the 8th international symposium on cavitation (CAV2012), Singapore

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Braeutigam .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this entry

Cite this entry

Braeutigam, P. (2016). Degradation of Organic Micropollutants by Hydrodynamic and/or Acoustic Cavitation. In: Handbook of Ultrasonics and Sonochemistry. Springer, Singapore. https://doi.org/10.1007/978-981-287-278-4_56

Download citation

Publish with us

Policies and ethics