Skip to main content

Importance of Sonication and Solution Conditions on the Acoustic Cavitation Activity

  • Reference work entry
  • First Online:
Handbook of Ultrasonics and Sonochemistry

Abstract

Acoustic cavitation is known to induce extreme physical and chemical effects, all of which derive from the creation and violent collapse of bubbles as the sound wave propagates through a liquid medium. In order to capitalize on the benefits of acoustic cavitation for specific physical and chemical process applications, it is important to understand how cavitation activity varies under different sonication and solution conditions. This chapter will first provide an introduction on bubble growth by rectified diffusion and bubble coalescence, which leads to the evolution of sonoluminescence (SL) and sonochemiluminescence (SCL) activity, and how these can be quantified. This will then be followed by a comprehensive review on the current state of knowledge relating to the influence sonication and solution properties, such as power, frequency, pulsing, dissolved gases, and surface-active solutes, have on bubble growth, SL, and SCL. This chapter will demonstrate the sensitivity of cavitation activity to small changes in sonication and solution properties, and why an awareness into these effects is important for optimizing ultrasound applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Young FR (1999) Cavitation. Imperial College Press, London

    Book  Google Scholar 

  2. Ohl CD, Kurz T, Geisler R, Lindau O, Lauterborn W (1999) Philos Trans R Soc Lond A 357:269–294

    Article  CAS  Google Scholar 

  3. Yasui K, Tuziuti T, Sivakumar M, Iida Y (2005) J Chem Phys 122:224706

    Article  Google Scholar 

  4. Leighton TG (1994) The acoustic bubble. Academic, London

    Google Scholar 

  5. Fox FE, Herzfeld KF (1954) J Acoust Soc Am 26:984–989

    Article  Google Scholar 

  6. Apfel RE (1970) J Acoust Soc Am 48:1179–1189

    Article  Google Scholar 

  7. Winterton RHS (1977) J Phys D Appl Phys 10:2041–2056

    Article  CAS  Google Scholar 

  8. Overton GDN, Trevena DH (1980) J Phys D Appl Phys 13:1309–1314

    Article  CAS  Google Scholar 

  9. Zhou M, Cavalieri F, Ashokkumar M (2011) Soft Matter 7:623–630

    Article  CAS  Google Scholar 

  10. Crum LA (1980) J Acoust Soc Am 68:203–211

    Article  Google Scholar 

  11. Iida Y, Ashokkumar M, Tuziuti T, Kozuka T, Yasui K, Towata A, Lee J (2010) Ultrason Sonochem 17:480–486

    Article  CAS  Google Scholar 

  12. Lee J, Kentish SE, Ashokkumar M (2005) J Phys Chem B 109:5095–5099

    Article  CAS  Google Scholar 

  13. Lee J, Ashokkumar M, Kentish S, Grieser F (2005) J Am Chem Soc 127:16810–16811

    Article  CAS  Google Scholar 

  14. Hatanaka S, Yasui K, Tuziuti T, Kozuka T, Mitome H (2001) Jpn J Appl Phys 40:3856–3860

    Article  CAS  Google Scholar 

  15. Bjerknes V (1906) Fields of force. The Columbia University Press, New York

    Google Scholar 

  16. Mettin R, Akhatov I, Parlitz U, Ohl CD, Lauterborn W (1997) Phys Rev E 56:2924–2931

    Article  CAS  Google Scholar 

  17. Crum LA (1975) J Acoust Soc Am 57:1363–1371

    Article  Google Scholar 

  18. Yasui K, Iida Y, Tuziuti T, Kozuka T, Towata A (2008) Phys Rev E 77:016609

    Article  Google Scholar 

  19. Pelekasis NA, Tsamopoulos JA (1993) J Fluid Mech 254:501–527

    Article  CAS  Google Scholar 

  20. Duineveld PC (1996) J Acoust Soc Am 99:622–624

    Article  Google Scholar 

  21. Jiao J, He Y, Yasui K, Kentish SE, Ashokkumar M, Manasseh R, Lee J (2015) Ultrason Sonochem 22:70–77

    Article  Google Scholar 

  22. Labouret S, Frohly J (2000) Eur Phys J Appl Phys 10:231–237

    Article  Google Scholar 

  23. Labouret S, Frohly J (2002) Eur Phys J Appl Phys 19:39–54

    Article  Google Scholar 

  24. Lee J (2006) Bubble dynamics in the presence of ultrasound and surface active agents. PhD thesis, The University of Melbourne

    Google Scholar 

  25. Labouret S, Looten-Baquet I, Frohly J, Haine F (1998) Ultrasonics 36:603–606

    Article  Google Scholar 

  26. Yosioka K, Omura A (1962) Proc Annu Meet Acoust Soc Jpn 125–126

    Google Scholar 

  27. Gaitan DF (1990) An experimental investigation of acoustic cavitation in gaseous liquids. PhD thesis, The University of Mississippi

    Google Scholar 

  28. Gaitan DF, Crum LA, Church CC, Roy RA (1992) J Acoust Soc Am 91:3166–3183

    Article  Google Scholar 

  29. Ashokkumar M, Grieser F (2000) J Am Chem Soc 122:12001–12002

    Article  CAS  Google Scholar 

  30. Noltingk BE, Neppiras EA (1950) Proc R Soc Lond Ser B 63:674–685

    Article  Google Scholar 

  31. Gompf B, Günther R, Nick G, Pecha R, Eisenmenger W (1997) Phys Rev Lett 79:1405–1408

    Article  CAS  Google Scholar 

  32. Flannigan DJ, Suslick KS (2005) Nature 434:52–55

    Article  CAS  Google Scholar 

  33. Hatanaka S, Yasui K, Kozuka T, Tuziuti T, Mitome H (2002) Ultrsasonics 40:655–660

    Article  CAS  Google Scholar 

  34. Marinesco N, Trillat JJ (1933) Proc R Acad Sci 196:858–860

    CAS  Google Scholar 

  35. Frenzel H, Schultes H (1934) Z Phys Chem 27b:421–424

    Google Scholar 

  36. Tronson R, Ashokkumar M, Grieser F (2002) J Phys Chem B 106:11064–11068

    Article  CAS  Google Scholar 

  37. Henglein A, Ulrich R, Lilie J (1989) J Am Chem Soc 111:1974–1979

    Article  CAS  Google Scholar 

  38. Henglein A, Herburger D, Gutierrez M (1992) J Phys Chem 96:1126–1130

    Article  CAS  Google Scholar 

  39. Crum LA, Reynolds GT (1985) J Acoust Soc Am 78:137–139

    Article  CAS  Google Scholar 

  40. Leighton TG, Pickworth MJW, Walton AJ, Dendy PP (1988) Phys Med Biol 33:1239–1248

    Article  Google Scholar 

  41. Minnaert M (1933) Philos Mag 16:235–248

    Google Scholar 

  42. Yasui K (2002) J Acoust Soc Am 112:1405–1413

    Article  CAS  Google Scholar 

  43. Pandit AB, Varley J, Thorpe RB, Davidson JF (1992) Chem Eng Sci 47:1079–1089

    Article  CAS  Google Scholar 

  44. Chen WS, Matula TJ, Crum LA (2002) Ultrasound Med Biol 28:793–803

    Article  Google Scholar 

  45. Brotchie A, Grieser F, Ashokkumar M (2009) Phys Rev Lett 102:084302

    Article  Google Scholar 

  46. Burdin F, Tsochatzidis NA, Guiraud P, Wilhelm AM, Delmas H (1999) Ultrason Sonochem 6:43–51

    Article  CAS  Google Scholar 

  47. Tsochatzidis NA, Guiraud P, Wilhelm AM, Delmas H (2001) Chem Eng Sci 56:1831–1840

    Article  CAS  Google Scholar 

  48. Chapelon J, Newhouse V, Cathignol D, Shankar P (1988) Ultrasonics 26:148–154

    Article  Google Scholar 

  49. Iida Y, Ashokkumar M, Tuziuti T, Kozuka T, Yasui K, Towata A, Lee J (2010) Ultrason Sonochem 17:473–479

    Article  CAS  Google Scholar 

  50. Hatanaka S, Mitome H, Yasui K, Hayashi S (2002) J Am Chem Soc 124:10250–10251

    Article  CAS  Google Scholar 

  51. Crum LA (1984) Ultrasonics 22:215–223

    Article  CAS  Google Scholar 

  52. Louisnard O, Gomez F (2003) Phys Rev E 67:036610

    Article  Google Scholar 

  53. Sunartio D, Ashokkumar M, Grieser F (2007) J Am Chem Soc 129:6031–6036

    Article  CAS  Google Scholar 

  54. Hatanaka S, Yasui K, Tuziuti T, Mitome H (2000) Jpn J Appl Phys 39:2962–2966

    Article  CAS  Google Scholar 

  55. Sunartio D, Yasui K, Tuziuti T, Kozuka T, Iida Y, Ashokkumar M, Grieser F (2007) Chem Phys Chem 8:2331–2335

    CAS  Google Scholar 

  56. Yasui K, Tuziuti T, Lee J, Kozuka T, Towata A, Iida Y (2008) J Chem Phys 128:184705

    Article  Google Scholar 

  57. Eller AI, Flynn HG (1965) J Acoust Soc Am 37:493–503

    Article  Google Scholar 

  58. Meidani AN, Hasan M (2004) Appl Math Model 28:333–351

    Article  Google Scholar 

  59. Wu S, Leong T, Kentish S, Ashokkumar M (2009) J Phys Chem B 113:16568–16573

    Article  CAS  Google Scholar 

  60. Lee J, Ashokkumar M, Yasui K, Tuziuti T, Kozuka T, Towata A, Iida Y (2011) Ultrason Sonochem 18:92–98

    Article  CAS  Google Scholar 

  61. Asakura Y, Nishida T, Matsuoka T, Koda S (2008) Ultrason Sonochem 15:244–250

    Article  CAS  Google Scholar 

  62. Ashokkumar M, Lee J, Iida Y, Yasui K, Kozuka T, Tuziuti T, Towata A (2009) Phys Chem Chem Phys 11:10118–10121

    Article  CAS  Google Scholar 

  63. Ashokkumar M, Lee J, Iida Y, Yasui K, Kozuka T, Tuziuti T, Towata A (2010) Chem Phys Chem 11:1680–1684

    CAS  Google Scholar 

  64. Brotchie AR (2010) Acoustic cavitation in dual frequency ultrasound fields. PhD thesis, The University of Melbourne

    Google Scholar 

  65. Choi P-K, Kaneko Y, Meguro T (2008) Jpn J Appl Phys 47:4111–4114

    Article  CAS  Google Scholar 

  66. Lee J, Yasui K, Tuziuti T, Kozuka T, Towata A, Iida Y (2008) J Phys Chem B 112:15333–15341

    Article  CAS  Google Scholar 

  67. Casadonte DJ Jr, Flores M, Petrier C (2005) Ultrason Sonochem 12:147–152

    Article  CAS  Google Scholar 

  68. Tuziuti T, Yasui K, Lee J, Kozuka T, Towata A, Iida Y (2008) J Phys Chem A 112:4875–4878

    Article  CAS  Google Scholar 

  69. Kang B-K, Kim M-S, Park J-G (2014) Ultrason Sonochem 21:1496–1503

    Article  CAS  Google Scholar 

  70. Tuziuti T, Yasui K, Iida Y, Sivakumar M, Koda S (2004) J Phys Chem A 108:9011–9013

    Article  CAS  Google Scholar 

  71. Young FR (1976) J Acoust Soc Am 60:100–104

    Article  CAS  Google Scholar 

  72. McNamara WB, Didenko YT, Suslick KS (1999) Nature 401:772–775

    Article  CAS  Google Scholar 

  73. Lee J, Kentish S, Ashokkumar M (2005) J Phys Chem B 109:14595–14598

    Article  CAS  Google Scholar 

  74. Leong T, Wu S, Kentish S, Ashokkumar M (2010) J Phys Chem C 114:20141–20145

    Article  CAS  Google Scholar 

  75. Leong T, Collis J, Manasseh R, Ooi A, Novell A, Bouakaz A, Ashokkumar M, Kentish S (2011) J Phys Chem C 115:24310–24316

    Article  CAS  Google Scholar 

  76. Oolman TO, Blanch HW (1986) Chem Eng Commun 43:237–261

    Article  CAS  Google Scholar 

  77. Lee J, Kentish S, Ashokkumar M, Grieser F (2006) J Phys Chem B 110:17282–17285

    Article  CAS  Google Scholar 

  78. Stottlemyer TR, Apfel RE (1997) J Acoust Soc Am 102:1418–1423

    Article  CAS  Google Scholar 

  79. Ashokkumar M, Crum LA, Frensley CA, Grieser F, Matula TJ, McNamara WB III, Suslick KS (2000) J Phys Chem A 104:8462–8465

    Article  CAS  Google Scholar 

  80. Ashokkumar M, Guan J, Tronson R, Matula TJ, Nuske JW, Grieser F (2002) Phys Rev E 65:046310

    Article  Google Scholar 

  81. Guan J, Matula TJ (2003) J Phys Chem B 107:8917–8921

    Article  CAS  Google Scholar 

  82. Ashokkumar M, Hall R, Mulvaney P, Grieser F (1997) J Phys Chem B 101:10845–10850

    Article  CAS  Google Scholar 

  83. Grieser F, Ashokkumar M (2001) Adv Colloid Interface Sci 89–90:423–428

    Article  Google Scholar 

  84. Segebarth N, Eulaerts O, Reisse J, Crum LA, Matula TJ (2002) J Phys Chem B 106:9181–9190

    Article  CAS  Google Scholar 

  85. Price GJ, Ashokkumar M, Grieser F (2004) J Am Chem Soc 126:2755–2762

    Article  CAS  Google Scholar 

  86. Browne C, Tabor RF, Chan DYC, Dagastine RR, Ashokkumar M, Grieser F (2011) Langmuir 27:12025–12032

    Article  CAS  Google Scholar 

  87. Wall M, Ashokkumar M, Tronson R, Grieser F (1999) Ultrason Sonochem 6:7–14

    Article  CAS  Google Scholar 

  88. Hallez L, Touyeras F, Hihn J, Klima J, Guey J-L, Spajer M, Bailly Y (2010) Ultrasonics 50:310–317

    Article  CAS  Google Scholar 

  89. Birkin PR, Leighton TG, Power JF, Simpson MD, Vincotte AML, Joseph PF (2003) J Phys Chem A 107:306–320

    Article  CAS  Google Scholar 

  90. Hatanaka S, Mitome H, Yasui K, Hayashi S (2006) Ultrasonics 44:e435–e438

    Article  Google Scholar 

  91. Matsuoka T, Asakura Y, Nishida T, Nii S, Koda S (2007) J Chem Eng Jpn 40:497–500

    Article  CAS  Google Scholar 

  92. Gondrexon N, Renaudin V, Petrier C, Boldo P, Bernis A, Gonthier Y (1999) Ultrason Sonochem 5:125–131

    Article  CAS  Google Scholar 

  93. Bussemaker MJ, Zhang D (2014) Ultrason Sonochem 21:436–445

    Article  CAS  Google Scholar 

  94. Bussemaker MJ, Zhang D (2014) Ultrason Sonochem 21:485–492

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judy Lee .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this entry

Cite this entry

Lee, J. (2016). Importance of Sonication and Solution Conditions on the Acoustic Cavitation Activity. In: Handbook of Ultrasonics and Sonochemistry. Springer, Singapore. https://doi.org/10.1007/978-981-287-278-4_10

Download citation

Publish with us

Policies and ethics