Skip to main content

Biflavonoids and Oligomeric Flavonoids from Food

  • Living reference work entry
  • First Online:
Handbook of Dietary Phytochemicals

Abstract

Biflavonoids and oligomeric flavonoids are the representatives of flavonoids from the diet, which can be classified into several subclasses according to the essential chemical structures. Proanthocyanidin and biflavonoid are two types of representative compounds that are widely distributed in various foods. Although the previous studies have verified that the increase of the polymerization degree of these molecules usually lowered the in vivo bioavailability, the in vivo metabolism of these compounds still remained indeterminate. Some of the most commonly reported in vitro activities of biflavonoids and oligomeric flavonoids were summarized subsequently. And the applications of biflavonoids and oligomeric flavonoids in several processed foods were elucidated because the chemical change during the processing of these compounds can affect the taste and color of the foods. Moreover, the effect on the prevention and relief of some chronic diseases, as well as the uncertain side effects and toxicity of the commercial products being popular on the market, were summarized and analyzed. In addition, the effects of biflavonoids and oligomeric flavonoids on public health, the patents that related to the extract and preparation method, and prospectives and recommendations of their applications were proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adisakwattana S, Moonrat J, Srichairat S, Chanasit C, Tirapongporn H, Chanathong B, Ngamukote S, Maekynen K, Sapwarobol S (2010) Lowering mechanisms of grape seed extract (Vitis vinifera L) and its antihyperlidemic activity. J Med Plants Res 4(20):2113–2120

    Google Scholar 

  • Alcalde-Eon C, Escribano-Bailón MT, Santos-Buelga C, Rivas-Gonzalo JC (2006) Changes in the detailed pigment composition of red wine during maturity and ageing: a comprehensive study. Anal Chim Acta 563(1–2):238–254

    CAS  Google Scholar 

  • Anhe FF, Roy D, Pilon G, Dudonne S, Matamoros S, Varin TV, Garofalo C, Moine Q, Desjardins Y, Levy E, Marette A (2015) A polyphenol-rich cranberry extract protects from diet-induced obesity, insulin resistance and intestinal inflammation in association with increased Akkermansia spp. population in the gut microbiota of mice. Gut 64(6):872–883

    CAS  PubMed  Google Scholar 

  • Appeldoorn MM, Vincken J-P, Aura A-M, Hollman PC, Gruppen H (2009) Procyanidin dimers are metabolized by human microbiota with 2-(3, 4-dihydroxyphenyl) acetic acid and 5-(3, 4-dihydroxyphenyl)-γ-valerolactone as the major metabolites. J Agric Food Chem 57(3):1084–1092

    CAS  PubMed  Google Scholar 

  • Bagchi D, Garg A, Krohn R, Bagchi M, Tran M, Stohs S (1997) Oxygen free radical scavenging abilities of vitamins C and E, and a grape seed proanthocyanidin extract in vitro. Res Commun Mol Pathol Pharmacol 95(2):179–189

    CAS  PubMed  Google Scholar 

  • Bagchi D, Swaroop A, Preuss HG, Bagchi M (2014) Free radical scavenging, antioxidant and cancer chemoprevention by grape seed proanthocyanidin: an overview. Mutat Res Fundam Mol Mech Mutagen 768:69–73

    CAS  Google Scholar 

  • Baliga MS, Katiyar SK (2006) Chemoprevention of photocarcinogenesis by selected dietary botanicals. Photochem Photobiol Sci 5(2):243–253

    CAS  PubMed  Google Scholar 

  • Bautista-Ortín AB, Busse-Valverde N, López-Roca JM, Gil-Muñoz R, Gómez-Plaza E (2014) Grape seed removal: effect on phenolics, chromatic and organoleptic characteristics of red wine. Int J Food Sci Technol 49(1):34–41

    Google Scholar 

  • Bell JRC, Donovan JL, Wong R, Waterhouse AL, German JB, Walzem RL, Kasim-Karakas SE (2000) (+)-Catechin in human plasma after ingestion of a single serving of reconstituted red wine. Am J Clin Nutr 71(1):103–108

    CAS  PubMed  Google Scholar 

  • Bhagwat S, Haytowitz D (2015) USDA database for the proanthocyanidin content of selected foods, release 2. US Department of Agriculture, Agricultural Service, Nutrient Data Laboratory, Beltsville

    Google Scholar 

  • Bhupathiraju SN, Hu FB (2016) Epidemiology of obesity and diabetes and their cardiovascular complications. Circ Res 118(11):1723–1735

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bittner K, Rzeppa S, Humpf H-U (2013) Distribution and quantification of flavan-3-ols and procyanidins with low degree of polymerization in nuts, cereals, and legumes. J Agric Food Chem 61(38):9148–9154

    CAS  PubMed  Google Scholar 

  • Blade C, Aragones G, Arola-Arnal A, Muguerza B, Isabel Bravo F, Josepa Salvado M, Arola L, Suarez M (2016) Proanthocyanidins in health and disease. Biofactors 42(1):5–12

    CAS  PubMed  Google Scholar 

  • Brooker S, Martin S, Pearson A, Bagchi D, Earl J, Gothard L, Hall E, Porter L, Yarnold J (2006) Double-blind, placebo-controlled, randomised phase II trial of IH636 grape seed proanthocyanidin extract (GSPE) in patients with radiation-induced breast induration. Radiother Oncol 79(1):45–51

    PubMed  Google Scholar 

  • Brownmiller C, Howard LR, Prior RL (2009) Processing and storage effects on procyanidin composition and concentration of processed blueberry products. J Agric Food Chem 57(5):1896–1902

    CAS  PubMed  Google Scholar 

  • Busse-Valverde N, Bautista-Ortín A, Gómez-Plaza E, Fernández-Fernández J, Gil-Munoz R (2012) Influence of skin maceration time on the proanthocyanidin content of red wines. Eur Food Res Technol 235(6):1117–1123

    CAS  Google Scholar 

  • Carrascon V, Fernandez-Zurbano P, Bueno M, Ferreira V (2015) Oxygen consumption by red wines. Part II: differential effects on color and chemical composition caused by oxygen taken in different sulfur dioxide-related oxidation contexts. J Agric Food Chem 63(51):10938–10947

    CAS  PubMed  Google Scholar 

  • Casanova E, Baselga-Escudero L, Ribas-Latre A, Cedo L, Arola-Arnal A, Pinent M, Blade C, Arola L, Josepa Salvado M (2014) Chronic intake of proanthocyanidins and docosahexaenoic acid improves skeletal muscle oxidative capacity in diet-obese rats. J Nutr Biochem 25(10):1003–1010

    CAS  PubMed  Google Scholar 

  • Castello F, Costabile G, Bresciani L, Tassotti M, Naviglio D, Luongo D, Ciciola P, Vitale M, Vetrani C, Galaverna G, Brighenti F, Giacco R, Del Rio D, Mena P (2018) Bioavailability and pharmacokinetic profile of grape pomace phenolic compounds in humans. Arch Biochem Biophys 646:1–9

    CAS  PubMed  Google Scholar 

  • Chang Q, Zuo Z, Chow MS, Ho WK (2006) Effect of storage temperature on phenolics stability in hawthorn (Crataegus pinnatifida var. major) fruits and a hawthorn drink. Food Chem 98(3):426–430

    CAS  Google Scholar 

  • Charradi K, Mahmoudi M, Elkahoui S, Limam F, Aouani E (2013) Grape seed and skin extract mitigates heart and liver oxidative damage induced by a high-fat diet in the rat: gender dependency. Can J Physiol Pharmacol 91(12):1076–1085

    CAS  PubMed  Google Scholar 

  • Chen S, Liu H, Zhao X, Li X, Shan W, Wang X, Wang S, Yu W, Yang Z, Yu X (2020) Non-targeted metabolomics analysis reveals dynamic changes of volatile and non-volatile metabolites during oolong tea manufacture. Food Res Int 128:108778

    PubMed  Google Scholar 

  • Choy Y, Waterhouse A (2014) Proanthocyanidin metabolism, a mini review. Nutr Aging 2(2, 3):111–116

    CAS  Google Scholar 

  • Cires M-J, Navarrete P, Pastene E, Carrasco-Pozo C, Valenzuela R, Medina DA, Andriamihaja M, Beaumont M, Blachier F, Gotteland M (2019) Effect of a proanthocyanidin-rich polyphenol extract from avocado on the production of amino acid-derived bacterial metabolites and microbiota composition in rats fed a high-protein diet. Food Funct 10(7):4022–4035

    CAS  PubMed  Google Scholar 

  • Cos P, Bruyne TD, Hermans N, Apers S, Berghe DV, Vlietinck A (2004) Proanthocyanidins in health care: current and new trends. Curr Med Chem 11(10):1345–1359

    CAS  PubMed  Google Scholar 

  • Dai Q, Borenstein AR, Wu Y, Jackson JC, Larson EB (2006) Fruit and vegetable juices and Alzheimer’s disease: the Kame Project. Am J Med 119(9):751–759

    CAS  PubMed  PubMed Central  Google Scholar 

  • De Taeye CD, Caullet G, Eyamo Evina VJ, Collin S (2017) Procyanidin A2 and its degradation products in raw, fermented, and roasted cocoa. J Agric Food Chem 65(8):1715–1723

    CAS  PubMed  Google Scholar 

  • del Carmen Llaudy M, Canals R, González-Manzano S, Canals JM, Santos-Buelga C, Zamora F (2006) Influence of micro-oxygenation treatment before oak aging on phenolic compounds composition, astringency, and color of red wine. J Agric Food Chem 54(12):4246–4252

    Google Scholar 

  • Del Rio D, Rodriguez-Mateos A, Spencer JP, Tognolini M, Borges G, Crozier A (2013) Dietary (poly) phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid Redox Signal 18(14):1818–1892

    PubMed  PubMed Central  Google Scholar 

  • Dou J, Lee VS, Tzen JT, Lee M-R (2007) Identification and comparison of phenolic compounds in the preparation of oolong tea manufactured by semifermentation and drying processes. J Agric Food Chem 55(18):7462–7468

    CAS  PubMed  Google Scholar 

  • Dufresne CJ, Farnworth ER (2001) A review of latest research findings on the health promotion properties of tea. J Nutr Biochem 12(7):404–421

    CAS  PubMed  Google Scholar 

  • Farombi EO, Owoeye O (2011) Antioxidative and chemopreventive properties of Vernonia amygdalina and Garcinia biflavonoid. Int J Environ Res Public Health 8(6):2533–2555

    PubMed  PubMed Central  Google Scholar 

  • Fraga CG, Oteiza PI (2011) Dietary flavonoids: role of (−)-epicatechin and related procyanidins in cell signaling. Free Radic Biol Med 51(4):813–823

    CAS  PubMed  Google Scholar 

  • Gan RY, Li HB, Sui ZQ, Corke H (2018) Absorption, metabolism, anti-cancer effect and molecular targets of epigallocatechin gallate (EGCG): an updated review. Crit Rev Food Sci Nutr 58(6):924–941

    CAS  PubMed  Google Scholar 

  • Genova G, Tosetti R, Tonutti P (2016) Berry ripening, pre-processing and thermal treatments affect the phenolic composition and antioxidant capacity of grape (Vitis vinifera L.) juice. J Sci Food Agric 96(2):664–671

    CAS  PubMed  Google Scholar 

  • Gil M, Kontoudakis N, González E, Esteruelas M, Fort F, Canals JM, Zamora F (2012) Influence of grape maturity and maceration length on color, polyphenolic composition, and polysaccharide content of Cabernet Sauvignon and Tempranillo wines. J Agric Food Chem 60(32):7988–8001

    CAS  PubMed  Google Scholar 

  • Goncalves R, Mateus N, de Freitas V (2011) Inhibition of alpha-amylase activity by condensed tannins. Food Chem 125(2):665–672

    CAS  Google Scholar 

  • Gontijo VS, dos Santos MH, Viegas J (2017) Biological and chemical aspects of natural biflavonoids from plants: a brief review. Mini-Rev Med Chem 17(10):834–862

    CAS  PubMed  Google Scholar 

  • Gonzalez-Abuin N, Pinent M, Casanova-Marti A, Arola L, Blay M, Ardevol A (2015) Procyanidins and their healthy protective effects against Type 2 diabetes. Curr Med Chem 22(1):39–50

    CAS  PubMed  Google Scholar 

  • Granato TM, Nasi A, Ferranti P, Iametti S, Bonomi F (2014) Fining white wine with plant proteins: effects of fining on proanthocyanidins and aroma components. Eur Food Res Technol 238(2):265–274

    CAS  Google Scholar 

  • Greul A-K, Grundmann J-U, Heinrich F, Pfitzner I, Bernhardt J, Ambach A, Biesalski H-K, Gollnick H (2002) Photoprotection of UV-irradiated human skin: an antioxidative combination of vitamins E and C, carotenoids, selenium and proanthocyanidins. Skin Pharmacol Physiol 15(5):307–315

    CAS  Google Scholar 

  • Hammerstone JF, Lazarus SA, Schmitz HH (2000) Procyanidin content and variation in some commonly consumed foods. J Nutr 130(8):2086S–2092S

    CAS  PubMed  Google Scholar 

  • Heinmaa L, Moor U, Põldma P, Raudsepp P, Kidmose U, Scalzo RL (2017) Content of health-beneficial compounds and sensory properties of organic apple juice as affected by processing technology. LWT Food Sci Technol 85:372–379

    CAS  Google Scholar 

  • Hong Y-J, Barrett DM, Mitchell AE (2004) Liquid chromatography/mass spectrometry investigation of the impact of thermal processing and storage on peach procyanidins. J Agric Food Chem 52(8):2366–2371

    CAS  PubMed  Google Scholar 

  • Howard LR, Prior RL, Liyanage R, Lay JO (2012) Processing and storage effect on berry polyphenols: challenges and implications for bioactive properties. J Agric Food Chem 60(27):6678–6693

    CAS  PubMed  Google Scholar 

  • Hümmer W, Schreier P (2008) Analysis of proanthocyanidins. Mol Nutr Food Res 52(12):1381–1398

    PubMed  Google Scholar 

  • Hwang I-S, Lee J, Jin H-G, Woo E-R, Lee DG (2012) Amentoflavone stimulates mitochondrial dysfunction and induces apoptotic cell death in Candida albicans. Mycopathologia 173(4):207–218

    CAS  PubMed  Google Scholar 

  • Hwang JH, Choi H, Woo E-R, Lee DG (2013) Antibacterial effect of amentoflavone and its synergistic effect with antibiotics. J Microbiol Biotechnol 23(23):953–958

    CAS  PubMed  Google Scholar 

  • Josepa Salvado M, Casanova E, Fernandez-Iglesias A, Arola L, Blade C (2015) Roles of proanthocyanidin rich extracts in obesity. Food Funct 6(4):1053–1071

    PubMed  Google Scholar 

  • Jung HJ, Sung WS, Yeo S-H, Kim HS, Lee I-S, Woo E-R, Lee DG (2006) Antifungal effect of amentoflavone derived from Selaginella tamariscina. Arch Pharm Res 29(9):746

    CAS  PubMed  Google Scholar 

  • Kandikattu HK, Rachitha P, Krupashree K, Jayashree G, Abhishek V, Khanum F (2015) LC–ESI-MS/MS analysis of total oligomeric flavonoid fraction of Cyperus rotundus and its antioxidant, macromolecule damage protective and antihemolytic effects. Pathophysiology 22(4):165–173

    CAS  PubMed  Google Scholar 

  • Kar P, Laight D, Rooprai H, Shaw K, Cummings M (2009) Effects of grape seed extract in Type 2 diabetic subjects at high cardiovascular risk: a double blind randomized placebo controlled trial examining metabolic markers, vascular tone, inflammation, oxidative stress and insulin sensitivity. Diabet Med 26(5):526–531

    CAS  PubMed  Google Scholar 

  • Kato E (2019) Bioactive compounds in plant materials for the prevention of diabetesand obesity. Biosci Biotechnol Biochem 83(6):975–985

    CAS  PubMed  Google Scholar 

  • Katz DL, Doughty K, Ali A (2011) Cocoa and chocolate in human health and disease. Antioxid Redox Signal 15(10):2779–2811

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kelanne N, Laaksonen O, Seppälä T, Yang W, Tuukkanen K, Loponen J, Yang B (2019) Impact of cyclodextrin treatment on composition and sensory properties of lingonberry (Vaccinium vitis-idaea) juice. LWT Food Sci Technol 113:9

    Google Scholar 

  • Khanal R, Howard L, Prior R (2009) Procyanidin content of grape seed and pomace, and total anthocyanin content of grape pomace as affected by extrusion processing. J Food Sci 74(6):H174–H182

    CAS  PubMed  Google Scholar 

  • Kim HP, Park H, Son KH, Chang HW, Kang SS (2008) Biochemical pharmacology of biflavonoids: implications for anti-inflammatory action. Arch Pharm Res 31(3):265

    CAS  PubMed  Google Scholar 

  • Kolniak-Ostek J, Oszmiański J, Wojdyło A (2013) Effect of l-ascorbic acid addition on quality, polyphenolic compounds and antioxidant capacity of cloudy apple juices. Eur Food Res Technol 236(5):777–798

    CAS  Google Scholar 

  • Kruger MJ, Davies N, Myburgh KH, Lecour S (2014) Proanthocyanidins, anthocyanins and cardiovascular diseases. Food Res Int 59:41–52

    CAS  Google Scholar 

  • Kudolo GB, Delaney D, Blodgett J (2005) Short-term oral ingestion of Ginkgo biloba extract (EGb 761) reduces malondialdehyde levels in washed platelets of type 2 diabetic subjects. Diabetes Res Clin Pract 68(1):29–38

    PubMed  Google Scholar 

  • Kulling SE, Rawel HM (2008) Chokeberry (Aronia melanocarpa) – a review on the characteristic components and potential health effects. Planta Med 74(13):1625–1634

    CAS  PubMed  Google Scholar 

  • Kumar S, Pandey AK (2013) Chemistry and biological activities of flavonoids: an overview. Sci World J 2013:16

    Google Scholar 

  • Lamuela-Raventós R, Romero-Pérez A, Andrés-Lacueva C, Tornero A (2005) Health effects of cocoa flavonoids. Food Sci Technol Int 11(3):159–176

    Google Scholar 

  • Latief N, Anand S, Lingaraju MC, Balaganur V, Pathak NN, Kalra J, Kumar D, Bhadoria BK, Tandan SK (2015) Effect of Trimeric Myricetin Rhamnoside (TMR) in Carrageenan-induced inflammation and caecal ligation and puncture-induced lung oxidative stress in mice. Phytother Res 29(11):1798–1805

    CAS  PubMed  Google Scholar 

  • Le Bars P, Velasco F, Ferguson J, Dessain E, Kieser M, Hoerr R (2002) Influence of the severity of cognitive impairment on the effect of the Ginkgo biloba extract EGb 761® in Alzheimer’s disease. Neuropsychobiology 45(1):19–26

    PubMed  Google Scholar 

  • Lee MK, Lim SW, Yang H, Sung SH, Lee H-S, Park MJ, Kim YC (2006) Osteoblast differentiation stimulating activity of biflavonoids from Cephalotaxus koreana. Bioorg Med Chem Lett 16(11):2850–2854

    CAS  PubMed  Google Scholar 

  • Liu Q, Li D, Wang A, Dong Z, Yin S, Zhang Q, Ye Y, Li L, Lin L (2016) Nitric oxide inhibitory xanthones from the pericarps of Garcinia mangostana. Phytochemistry 131:115–123

    CAS  PubMed  Google Scholar 

  • Liu W, Zhao S, Wang J, Shi J, Sun Y, Wang W, Ning G, Hong J, Liu R (2017) Grape seed proanthocyanidin extract ameliorates inflammation and adiposity by modulating gut microbiota in high-fat diet mice. Mol Nutr Food Res 61(9):1601082

    Google Scholar 

  • Loggia RD, Sosa S, Tubaro A, Morazzoni P, Bombardelli E, Griffini A (1996) Anti-inflammatory activity of some Ginkgo biloba constituents and of their phospholipid-complexes. Fitoterapia 67(3):257–264

    Google Scholar 

  • Lu A, Liu B, Liu H, Zhou J, Xie G (2004) A traditional Chinese medicine plant–compound database and its application for searching. Internet Electron J Mol Des 3(10):672–683

    CAS  Google Scholar 

  • Ly TN, Hazama C, Shimoyamada M, Ando H, Kato K, Yamauchi R (2005) Antioxidative compounds from the outer scales of onion. J Agric Food Chem 53(21):8183–8189

    CAS  PubMed  Google Scholar 

  • Ma G-L, Xiong J, Yang G-X, Pan L-L, Hu C-L, Wang W, Fan H, Zhao Q-H, Zhang H-Y, Hu J-F (2016) Biginkgosides A–I, unexpected minor dimeric flavonol diglycosidic truxinate and truxillate esters from Ginkgo biloba leaves and their antineuroinflammatory and neuroprotective activities. J Nat Prod 79(5):1354–1364

    CAS  PubMed  Google Scholar 

  • Mantena SK, Katiyar SK (2006) Grape seed proanthocyanidins inhibit UV-radiation-induced oxidative stress and activation of MAPK and NF-kappa B signaling in human epidermal keratinocytes. Free Radic Biol Med 40(9):1603–1614

    CAS  PubMed  Google Scholar 

  • Martínez-Lapuente L, Guadalupe Z, Ayestarán B (2017) Effect of egg albumin fining, progressive clarification and cross-flow microfiltration on the polysaccharide and proanthocyanidin composition of red varietal wines. Food Res Int 96:235–243

    PubMed  Google Scholar 

  • Maskarinec G (2009) Cancer protective properties of cocoa: a review of the epidemiologic evidence. Nutr Cancer 61(5):573–579

    CAS  PubMed  Google Scholar 

  • Mazur A, Bayle D, Rock E, Rayssiguier Y (1999) Inhibitory effect of procyanidin-rich extracts on LDL oxidation in vitro. Atherosclerosis 145(2):421–422

    CAS  PubMed  Google Scholar 

  • Meeran SM, Katiyar SK (2008) Proanthocyanidins inhibit mitogenic and survival-signaling in vitro and tumor growth in vivo. Front Biosci Landmark 13:887–897

    CAS  Google Scholar 

  • Mierziak J, Kostyn K, Kulma A (2014) Flavonoids as important molecules of plant interactions with the environment. Molecules 19(10):16240–16265

    PubMed  PubMed Central  Google Scholar 

  • Mohamed GA (2008) Alliuocide G, a new flavonoid with potent α-amylase inhibitory activity from Allium cepa L. Arkivoc 11:202–209

    Google Scholar 

  • Molva C, Baysal AH (2015) Antimicrobial activity of grape seed extract on Alicyclobacillus acidoterrestris DSM 3922 vegetative cells and spores in apple juice. LWT Food Sci Technol 60(1):238–245

    CAS  Google Scholar 

  • Moreno DA, Ilic N, Poulev A, Brasaemle DL, Fried SK, Raskin I (2003) Inhibitory effects of grape seed extract on lipases. Nutrition 19(10):876–879

    CAS  PubMed  Google Scholar 

  • Moreno JJ, Cerpa-Calderón F, Cohen SD, Fang Y, Qian M, Kennedy JA (2008) Effect of postharvest dehydration on the composition of pinot noir grapes (Vitis vinifera L.) and wine. Food Chem 109(4):755–762

    CAS  PubMed  Google Scholar 

  • Murthy S (1986) Semecarpuflavanone – a new biflavanone from Semecarpus anacardium Linn. In: Proceedings of the Indian academy of sciences-chemical sciences, vol 1. Springer, pp 63–69

    Google Scholar 

  • Nakagawa K, Miyazawa T (1997) Chemiluminescence–high-performance liquid chromatographic determination of tea catechin, (−)-epigallocatechin 3-gallate, at picomole levels in rat and human plasma. Anal Biochem 248(1):41–49

    CAS  PubMed  Google Scholar 

  • Nandakumar V, Singh T, Katiyar SK (2008) Multi-targeted prevention and therapy of cancer by proanthocyanidins. Cancer Lett 269(2):378–387

    CAS  PubMed  PubMed Central  Google Scholar 

  • Neilson AP, O’Keefe SF, Bolling BW (2016) High-molecular-weight proanthocyanidins in foods: overcoming analytical challenges in pursuit of novel dietary bioactive components. Annu Rev Food Sci Technol 7:43–64

    CAS  PubMed  Google Scholar 

  • Neto CC (2007) Cranberry and its phytochemicals: a review of in vitro anticancer studies. J Nutr 137(1):186S–193S

    CAS  PubMed  Google Scholar 

  • Ngamsuk S, Huang T-C, Hsu J-L (2019) Determination of phenolic compounds, procyanidins, and antioxidant activity in processed Coffea arabica L. leaves. Foods 8(9):389

    CAS  PubMed Central  Google Scholar 

  • Nie Y, Stürzenbaum SR (2019) Proanthocyanidins of natural origin: molecular mechanisms and implications for lipid disorder and aging-associated diseases. Adv Nutr 10(3):464–478

    PubMed  PubMed Central  Google Scholar 

  • Nkengfack AE, Mkounga P, Meyer M, Fomum ZT, Bodo B (2002) Globulixanthones C, D and E: three prenylated xanthones with antimicrobial properties from the root bark of Symphonia globulifera. Phytochemistry 61(2):181–187

    CAS  PubMed  Google Scholar 

  • Nowshehri JA, Bhat ZA, Shah MY (2015) Blessings in disguise: bio-functional benefits of grape seed extracts. Food Res Int 77:333–348

    CAS  Google Scholar 

  • Oliveira A, Pintado M, Almeida DP (2012) Phytochemical composition and antioxidant activity of peach as affected by pasteurization and storage duration. LWT Food Sci Technol 49(2):202–207

    CAS  Google Scholar 

  • Oszmiański J, Wojdyło A (2007) Effects of various clarification treatments on phenolic compounds and color of apple juice. Eur Food Res Technol 224(6):755–762

    Google Scholar 

  • Ou K, Gu L (2014) Absorption and metabolism of proanthocyanidins. J Funct Foods 7:43–53

    CAS  Google Scholar 

  • Oyagbemi AA, Omobowale TO, Adedapo AA, Yakubu MA (2016) Kolaviron, biflavonoid complex from the seed of Garcinia kola attenuated angiotensin II- and lipopolysaccharide-induced vascular smooth muscle cell proliferation and nitric oxide production. Pharm Res 8(Suppl 1):S50–S55

    Google Scholar 

  • Panth N, Paudel KR, Parajuli K (2016) Reactive oxygen species: a key hallmark of cardiovascular disease. Adv Med 2016:9152732

    PubMed  PubMed Central  Google Scholar 

  • Pascual-Serrano A, Arola-Arnal A, Suárez-García S, Bravo F, Suárez M, Arola L, Bladé C (2017) Grape seed proanthocyanidin supplementation reduces adipocyte size and increases adipocyte number in obese rats. Int J Obes 41(8):1246

    CAS  Google Scholar 

  • Pereira GA, Araujo NMP, Arruda HS, de Paulo Farias D, Molina G, Pastore GM (2019) Phytochemicals and biological activities of mutamba (Guazuma ulmifolia Lam.): a review. Food Res Int 126:19

    Google Scholar 

  • Pinent M, Bladé C, Salvadó MJ, Blay M, Pujadas G, Fernández-Larrea J, Arola L, Ardévol A (2006) Procyanidin effects on adipocyte-related pathologies. Crit Rev Food Sci Nutr 46(7):543–550

    CAS  PubMed  Google Scholar 

  • Pipingas A, Silberstein RB, Vitetta L, Rooy CV, Harris EV, Young JM, Frampton CM, Sali A, Nastasi J (2008) Improved cognitive performance after dietary supplementation with a Pinus radiata bark extract formulation. Phytother Res 22(9):1168–1174

    CAS  PubMed  Google Scholar 

  • Rauf A, Imran M, Abu-Izneid T, Iahfisham Ul H, Patel S, Pan X, Naz S, Silva AS, Saeed F, Suleria HAR (2019) Proanthocyanidins: a comprehensive review. Biomed Pharmacother 116(108999):1–6

    Google Scholar 

  • Renaud S, de Lorgeril M (1992) Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet (Lond) 339(8808):1523–1526

    CAS  Google Scholar 

  • Rodriguez-Mateos A, Ishisaka A, Mawatari K, Vidal-Diez A, Spencer JPE, Terao J (2013) Blueberry intervention improves vascular reactivity and lowers blood pressure in high-fat-, high-cholesterol-fed rats. Br J Nutr 109(10):1746–1754

    CAS  PubMed  Google Scholar 

  • Ryan J, Croft K, Mori T, Wesnes K, Spong J, Downey L, Kure C, Lloyd J, Stough C (2008) An examination of the effects of the antioxidant Pycnogenol® on cognitive performance, serum lipid profile, endocrinological and oxidative stress biomarkers in an elderly population. J Psychopharmacol 22(5):553–562

    CAS  PubMed  Google Scholar 

  • Santos-Buelga C, Scalbert A (2000) Proanthocyanidins and tannin-like compounds–nature, occurrence, dietary intake and effects on nutrition and health. J Sci Food Agric 80(7):1094–1117

    CAS  Google Scholar 

  • Scholey AB, French SJ, Morris PJ, Kennedy DO, Milne AL, Haskell CF (2010) Consumption of cocoa flavanols results in acute improvements in mood and cognitive performance during sustained mental effort. J Psychopharmacol 24(10):1505–1514

    CAS  PubMed  Google Scholar 

  • Schulz V, Hänsel R, Tyler VE (2001) Rational phytotherapy: a physician’s guide to herbal medicine. Psychology Press, United Kingdom, p 283

    Google Scholar 

  • Segade SR, Torchio F, Gerbi V, Quijada-Morín N, García-Estévez I, Giacosa S, Escribano-Bailón MT, Rolle L (2016) Impact of postharvest dehydration process of winegrapes on mechanical and acoustic properties of the seeds and their relationship with flavanol extraction during simulated maceration. Food Chem 199:893–901

    Google Scholar 

  • Shoji T, Yamada M, Miura T, Nagashima K, Ogura K, Inagaki N, Maeda-Yamamoto M (2017) Chronic administration of apple polyphenols ameliorates hyperglycaemia in high-normal and borderline subjects: a randomised, placebo-controlled trial. Diabetes Res Clin Pract 129:43–51

    CAS  PubMed  Google Scholar 

  • Silván JM, Mingo E, Hidalgo M, de Pascual-Teresa S, Carrascosa AV, Martinez-Rodriguez AJ (2013) Antibacterial activity of a grape seed extract and its fractions against Campylobacter spp. Food Control 29(1):25–31

    Google Scholar 

  • Skrede G, Wrolstad R, Durst R (2000) Changes in anthocyanins and polyphenolics during juice processing of highbush blueberries (Vaccinium corymbosum L.). J Food Sci 65(2):357–364

    CAS  Google Scholar 

  • Smeriglio A, Barreca D, Bellocco E, Trombetta D (2017) Proanthocyanidins and hydrolysable tannins: occurrence, dietary intake and pharmacological effects. Br J Pharmacol 174(11):1244–1262

    CAS  PubMed  Google Scholar 

  • Smith A (2000) Oxford dictionary of biochemistry and molecular biology. Revised edn. Oxford University Press, Oxford, p 651

    Google Scholar 

  • Strat KM, Rowley TJ IV, Smithson AT, Tessem JS, Hulver MW, Liu D, Davy BM, Davy KP, Neilson AP (2016) Mechanisms by which cocoa flavanols improve metabolic syndrome and related disorders. J Nutr Biochem 35:1–21

    CAS  PubMed  Google Scholar 

  • Stuard S, Belcaro G, Cesarone M, Ricci A, Dugall M, Cornelli U, Gizzi G, Pellegrini L, Rohdewald P (2010) Kidney function in metabolic syndrome may be improved with Pycnogenol®. Panminerva Med 52(2 Suppl 1):27–32

    CAS  PubMed  Google Scholar 

  • Sunil A, Kesavanarayanan K, Kalaivani P, Sathiya S, Ranju V, Priya RJ, Pramila B, Paul FS, Venkhatesh J, Babu CS (2011) Total oligomeric flavonoids of Cyperus rotundus ameliorates neurological deficits, excitotoxicity and behavioral alterations induced by cerebral ischemic–reperfusion injury in rats. Brain Res Bull 84(6):394–405

    CAS  PubMed  Google Scholar 

  • Tabares-Guevara JH, Lara-Guzmán OJ, Londoño-Londoño JA, Sierra JA, León-Varela YM, Álvarez-Quintero RM, Osorio EJ, Ramirez-Pineda JR (2017) Natural biflavonoids modulate nacrophage–oxidized LDL interaction in vitro and promote atheroprotection in vivo. Front Immunol 8:923

    PubMed  PubMed Central  Google Scholar 

  • Tamura T, Inoue N, Ozawa M, Shimizu-Ibuka A, Arai S, Abe N, Koshino H, Mura K (2013) Peanut-skin polyphenols, procyanidin A1 and epicatechin-(4 beta -> 6)-epicatechin-(2 beta -> O -> 7, 4 beta -> 8)-catechin, exert cholesterol micelle-degrading activity in vitro. Biosci Biotechnol Biochem 77(6):1306–1309

    CAS  PubMed  Google Scholar 

  • Tanaka T, Matsuo Y, Kouno I (2010) Chemistry of secondary polyphenols produced during processing of tea and selected foods. Int J Mol Sci 11(1):14–40

    CAS  Google Scholar 

  • Tao WY, Zhang Y, Shen XM, Cao YP, Shi J, Ye XQ, Chen SG (2019) Rethinking the mechanism of the health benefits of proanthocyanidins: absorption, metabolism, and interaction with gut microbiota. Compr Rev Food Sci Food Saf 18(4):971–985

    CAS  Google Scholar 

  • Termentzi A, Zervou M, Kokkalou E (2009) Isolation and structure elucidation of novel phenolic constituents from Sorbus domestica fruits. Food Chem 116(1):371–381

    CAS  Google Scholar 

  • Theodoratou E, Kyle J, Cetnarskyj R, Farrington SM, Tenesa A, Barnetson R, Porteous M, Dunlop M, Campbell H (2007) Dietary flavonoids and the risk of colorectal cancer. Cancer Epidemiol Prev Biomark 16(4):684–693

    CAS  Google Scholar 

  • Toden S, Ravindranathan P, Gu J, Cardenas J, Yuchang M, Goel A (2018) Oligomeric proanthocyanidins (OPCs) target cancer stem-like cells and suppress tumor organoid formation in colorectal cancer. Sci Rep 8(3335):1–13

    CAS  Google Scholar 

  • Toydemir G, Capanoglu E, Boyacioglu D, Beekwilder J, de Vos R, Hall R (2012) Sour cherry (Prunus cerasus L.) anthocyanins: effects of juice processing on phenolic compounds and bioavailability. Acta Hortic 1017:387–398

    Google Scholar 

  • Van Bulck M, Sierra-Magro A, Alarcon-Gil J, Perez-Castillo A, Morales-Garcia JA (2019) Novel approaches for the treatment of Alzheimer’s and Parkinson’s disease. Int J Mol Sci 20(3):719

    PubMed Central  Google Scholar 

  • Wang Y, Stevens VL, Shah R, Peterson JJ, Dwyer JT, Gapstur SM, McCullough ML (2014) Dietary flavonoid and proanthocyanidin intakes and prostate cancer risk in a prospective cohort of US men. Am J Epidemiol 179(8):974–986

    PubMed  Google Scholar 

  • Wang H, Naghavi M, Allen C, Barber RM, Bhutta ZA, Carter A, Casey DC, Charlson FJ, Chen AZ, Coates MM (2016) Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388(10053):1459–1544

    Google Scholar 

  • Ward NC, Hodgson JM, Croft KD, Burke V, Beilin LJ, Puddey IB (2005) The combination of vitamin C and grape-seed polyphenols increases blood pressure: a randomized, double-blind, placebo-controlled trial. J Hypertens 23(2):427–434

    CAS  PubMed  Google Scholar 

  • White BL, Howard LR, Prior RL (2011) Impact of different stages of juice processing on the anthocyanin, flavonol, and procyanidin contents of cranberries. J Agric Food Chem 59(9):4692–4698

    CAS  PubMed  Google Scholar 

  • Wilkes K, Howard LR, Brownmiller C, Prior RL (2013) Changes in chokeberry (Aronia melanocarpa L.) polyphenols during juice processing and storage. J Agric Food Chem 62(18):4018–4025

    PubMed  Google Scholar 

  • Wojdyło A, Teleszko M, Oszmiański J (2014) Antioxidant property and storage stability of quince juice phenolic compounds. Food Chem 152:261–270

    PubMed  Google Scholar 

  • Xiang W, Li R-T, Mao Y-L, Zhang H-J, Li S-H, Song Q-S, Sun H-D (2005) Four new prenylated isoflavonoids in Tadehagi triquetrum. J Agric Food Chem 53(2):267–271

    CAS  PubMed  Google Scholar 

  • Yan R-J, Li M-Y, Zhou H-F, Kong D-Y, Wu T (2017) Two new biflavonones from Coreopsis tinctoria. J Asian Nat Prod Res 19(10):960–965

    CAS  PubMed  Google Scholar 

  • Yang K, Chan CB (2017) Proposed mechanisms of the effects of proanthocyanidins on glucose homeostasis. Nutr Rev 75(8):642–657

    PubMed  Google Scholar 

  • Yang S, Shi P, Huang X, Zhao M, Li S, Wu Y, Lin X, Yao H (2016) Pharmacokinetics, tissue distribution and protein binding studies of chrysocauloflavone I in rats. Planta Med 82(03):217–223

    CAS  PubMed  Google Scholar 

  • Yonekura-Sakakibara K, Higashi Y, Nakabayashi R (2019) The origin and evolution of plant flavonoid metabolism. Front Plant Sci 10:943

    PubMed  PubMed Central  Google Scholar 

  • Yu L, Zhang F, Hu Z, Ding H, Tang H, Ma Z, Zhao X (2014) Novel prenylated bichalcone and chalcone from Humulus lupulus and their quinone reductase induction activities. Fitoterapia 93:115–120

    CAS  PubMed  Google Scholar 

  • Yu S, Yan H, Zhang L, Shan M, Chen P, Ding A, Li SFY (2017) A review on the phytochemistry, pharmacology, and pharmacokinetics of amentoflavone, a naturally-occurring biflavonoid. Molecules 22(2):299

    PubMed Central  Google Scholar 

  • Zhang L, Carmody RN, Kalariya HM, Duran RM, Moskal K, Poulev A, Kuhn P, Tveter KM, Turnbaugh PJ, Raskin I, Roopchand DE (2018) Grape proanthocyanidin-induced intestinal bloom of Akkermansia muciniphila is dependent on its baseline abundance and precedes activation of host genes related to metabolic health. J Nutr Biochem 56:142–151

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao C, Han S, Yang S, Xin W (2019a) Validation and application of a novel LC/MS/MS method for the determination of isoginkgetin in rat plasma. Biomed Chromatogr 33(11):6

    Google Scholar 

  • Zhao S, Zhang L, Yang C, Li Z, Rong S (2019b) Procyanidins and Alzheimer’s disease. Mol Neurobiol 56(8):5556–5567

    Google Scholar 

  • Zhou H-F, Xie C, Jian R, Kang J, Li Y, Zhuang C-L, Yang F, Zhang L-L, Lai L, Wu T, Wu X (2011) Biflavonoids from Caper (Capparis spinosa L.) fruits and their effects in inhibiting NF-kappa B activation. J Agric Food Chem 59(7):3060–3065

    CAS  PubMed  Google Scholar 

  • Zhu QY, Hammerstone JF, Lazarus SA, Schmitz HH, Keen CL (2003) Stabilizing effect of ascorbic acid on flavan-3-ols and dimeric procyanidins from cocoa. J Agric Food Chem 51(3):828–833

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianli Yue .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Yue, T. et al. (2020). Biflavonoids and Oligomeric Flavonoids from Food. In: Xiao, J., Sarker, S., Asakawa, Y. (eds) Handbook of Dietary Phytochemicals. Springer, Singapore. https://doi.org/10.1007/978-981-13-1745-3_7-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-1745-3_7-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-1745-3

  • Online ISBN: 978-981-13-1745-3

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics