Skip to main content

Alkaloids in Diet

  • Living reference work entry
  • First Online:

Abstract

Food is one of the three basic requirements of mankind, supplying six kinds of nutrients including water, carbohydrate, protein, lipid, vitamins, and minerals. Alkaloid-containing foods are an intrinsic part of the human diet, such as tea, coffee, and tomato. These food-oriented alkaloid constituents possess diverse effects on the human body, either wanted or unwanted. A large variety of food-produced alkaloids exhibit potent bioactivities, such as caffeine, atropine, and cocaine, whereas, lots of other alkaloids are toxic to human, such as pyrrolizidine alkaloids. This chapter focuses on the alkaloids in human diet and their mode of action and possible toxic effects. To organize this chapter, the alkaloids were categorized into nine groups based on their structures: pyrrolizidine alkaloids, tropane alkaloids, quinolizidine alkaloids, isoquinoline alkaloids, quinoline alkaloids, glycoalkaloids, purine alkaloids, pyridine alkaloids, and amide alkaloids. The structures of food-derived alkaloids are described, and their pharmacological activities, bioavailability, metabolism, and toxicological effects are discussed. Moreover, the application of alkaloids in medicines and food supplement, patents, as well as a conclusion about their current impact on food safety are reviewed. The main purpose of this chapter is to provide a comprehensive and up-to-date state of knowledge from phytochemical, pharmacological, and toxicological studies performed on alkaloids in human food.

This is a preview of subscription content, log in via an institution.

References

  • Adams M, Wiedenmann M, Tittel G, Bauer R (2006) HPLC-MS trace analysis of atropine in Lycium barbarum berries. Phytochem Anal 17(5):279–283

    Article  CAS  PubMed  Google Scholar 

  • Arzneibuch K (2004) European pharmacopoeia commentary. Wissenschaftliche Verlagsgesellschaft Stuttgart, Stuttgart

    Google Scholar 

  • Arzneibuch K (2007) European pharmacopoeia commentary. Wissenschaftliche Verlagsgesellschaft Stuttgart, Stuttgart

    Google Scholar 

  • Ballestero JA, Plazas PV, Kracun S, Gomez-Casati ME et al (2005) Effects of quinine, quinidine, and chloroquine on α9α10 nicotinic cholinergic receptors. Mol Pharmacol 68:822–829

    Article  CAS  PubMed  Google Scholar 

  • Benowitz NL (1988) Pharmacologic aspects of cigarette-smoking and nicotine addiction. N Engl J Med 319(20):1318–1330

    Article  CAS  PubMed  Google Scholar 

  • Bhardwaj RK, Glaeser H, Becquemont L, Klotz U, Gupta SK, Fromm MF (2002) Piperine, a major constituent of black pepper, inhibits human P-glycoprotein and CYP3A4. J Pharmacol Exp Ther 302(2):645–650

    Article  CAS  PubMed  Google Scholar 

  • Bhat R, Ganachari S, Deshpande R, Ravindra G, Venkataraman A (2013) Rapid biosynthesis of silver nanoparticles uing areca nut (Areca catechu) extract under microwave-assistance. J Clust Sci 24(1):107–114

    Article  CAS  Google Scholar 

  • Biondich AS, Joslin JD (2016) Coca: the history and medical significance of an ancient Andean tradition. Emerg Med Int 2016:4048764

    Article  PubMed  PubMed Central  Google Scholar 

  • Brown JH, Taylor P (2006) Muscarinic receptor agonists and antagonists. In: Brunton LL, Lazo JS, Parker KL (eds) Goodman & Gilman’s the pharmacological basis of therapeutics, 11th edn. McGraw-Hill, New York

    Google Scholar 

  • Bucher E, Meszaros L (1989) Stechapfelsamen (Datura sp.) und deren alkaloide in futtermitteln. Kraftfutter 3(89):76–82

    Google Scholar 

  • Crippa A, Discacciati A, Larsson SC, Wolk A, Orsini N (2014) Coffee consumption and mortality from all causes, cardiovascular disease, and cancer: a dose-response meta-analysis. Am J Epidemiol 180(8):763–775

    Article  PubMed  Google Scholar 

  • Deng XB, Zhu LP, Fang T et al (2016) Analysis of isoquinoline alkaloid composition and wound-induced variation in nelumbo using HPLC-MS/MS. J Agric Food Chem 64(5):1130–1136

    Article  CAS  PubMed  Google Scholar 

  • Dharmananda S (2004) Safety issues affecting herbs: pyrrolizidine alkaloids. http://www.itmonline.org/arts/pas.htm

  • Dusemund B, Appel KE, Lampen A (2010) Risk assessment of phytochemicals in food. DFG Senate commission on Food safety (SKLM), Weinheim

    Google Scholar 

  • Edgar JA, Roeder E, Molyneux RJ (2002) Honey from plants containing Pyrrolizidine alkaloids (PAs) a potential threat to health. J Agric Food Chem 50(10):2719–2730

    Article  CAS  PubMed  Google Scholar 

  • EFSA (2005) Opinion of the scientific panel on dietetic products, nutrition and allergies on a request from the commission related to the evaluation of Lupin for labelling purposes. Eur Food Safety Authority J 302:1–11

    Google Scholar 

  • EFSA (2008a) Three quinine salts from the priority list from chemical group 30, opinion of the scientific panel on food additives, flavourings, processing aids and materials in contact with food (EFSA-Q-2003-172B). EFSA J 739:1–18

    Google Scholar 

  • EFSA (2008b) Tropane alkaloids (from Datura sp.) as undesirable substances in animal feed. Scientific Opinion of the Panel on Contaminants in the Food Chain. EFSA J 691:1–55

    Google Scholar 

  • FDA/CFSAN (2007) FDA advises dietary supplement manufacturers to remove comfrey products from the market. US Food and Drug Administration, Washington, DC

    Google Scholar 

  • Friedman M, Henika PR, Mackey BE (2003) Effect of feeding solanidine, solasodine and tomatidine to non-pregnant and pregnant mice. Food Chem Toxicol 41:61–71

    Article  CAS  PubMed  Google Scholar 

  • Jain V, Garg A, Parascandola M et al (2017) Analysis of alkaloids in areca nut-containing products by liquid chromatography–tandem mass spectrometry. J Agric Food Chem 65(9):1977–1983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Je JY, Lee DB (2015) Nelumbo nucifera leaves protect hydrogen peroxide-induced hepatic damage via antioxidant enzymes and HO-1/Nrf2 activation. Food Funct 6(6):1911–1918

    Article  CAS  PubMed  Google Scholar 

  • JECFA JFWECoFA (1993) Solanine and chaconine. Toxicological evaluation of certain food additives and naturally occurring toxicants prepared by the 39th meeting of the JECFA, WHO Food additives series 30. Geneva

    Google Scholar 

  • Jellin JM, Gregory PJ (2007) Natural medicines comprehensive database, 9th edn. Therapeutic Research Faculty and Stockton, Califonia

    Google Scholar 

  • Kempf M, Beuerle T, Buehringer M et al (2008) Pyrrolizidine alkaloids in honey: risk analysis by gas chromatography-mass spectrometry. Mol Nutr Food Res 52(10):1193–1200

    Article  CAS  PubMed  Google Scholar 

  • Kenny PJ, Markou A (2006) Nicotine self-administration acutely activates brain reward systems and induces a long-lasting increase in reward sensitivity. Neuropsychopharmacology 31(6):1203–1211

    Article  CAS  PubMed  Google Scholar 

  • Korpan YI, Nazarenko EA, Skryshevskaya IV et al (2004) Potato glycoalkaloids: true safety or false sense of security? Trends Biotechnol 22(3):147–151

    Article  CAS  PubMed  Google Scholar 

  • Kotsopoulos J, Vitonis AF, Terry KL et al (2009) Coffee intake, variants in genes involved in caffeine metabolism, and the risk of epithelial ovarian cancer. Cancer Causes Control 20(3):335–344

    Article  PubMed  Google Scholar 

  • Lee JS, Shukla S, Kim JA, Kim M (2015) Anti-angiogenic effect of Nelumbo nucifera leaf extracts in human umbilical vein endothelial cells with antioxidant potential. PLoS One 10(2):e0118552

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu WY, Guo JL, Xiang ZX, Deng LF, He L (2015) Nuciferine, extracted from Nelumbo nucifera Gaertn, inhibits tumorpromoting effect of nicotine involving Wnt/beta-catenin signaling in non-small cell lung cancer. J Ethnopharmacol 165:83–93

    Article  CAS  PubMed  Google Scholar 

  • Martindale (2010) The complete drug reference; Cocaine; Hyoscyamine; Hyoscine. Pharmaceutical Press and London, UK

    Google Scholar 

  • Meletis CD, Wagner E (2002) Natural remedies for promoting skin health. Alternative and Complementary Therapies 8(3):186–190

    Article  Google Scholar 

  • Michels KB, Willett WC, Fuchs CS, Giovannucci E (2005) Coffee, tea, and caffeine consumption and incidence of colon and rectal cancer. J Natl Cancer Inst 97(4):282–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng W, Liu YJ, Wu N et al (2015) Areca catechu L. (Arecaceae): a review of its traditional uses, botany, phytochemistry, pharmacology and toxicology. J Ethnopharmacol 164:340–356

    Article  CAS  PubMed  Google Scholar 

  • Pomerleau OF, Pomerleau CS (1984) Neuroregulators and the reinforcement of smoking-towards a biobehavioral explanation. Neurosci Biobehav Rev 8(4):503–513

    Article  CAS  PubMed  Google Scholar 

  • Potterat O (2010) Goji (Lycium barbarum and L. chinense): phytochemistry, pharmacology and safety in the perspective of traditional uses and recent popularity. Planta Med 76(1):7–19

    Article  CAS  PubMed  Google Scholar 

  • Prakash AS, Pereira TN, Reilly PEB, Seawright AA (1999) Pyrrolizidine alkaloids in human diet. Mutat Res Genet Toxicol Environ Mutagen 443(1–2):53–67

    Article  CAS  Google Scholar 

  • Reen RK, Jamwal DS, Taneja SC et al (1993) Impairment of Udp-glucose dehydrogenase and gucuronidation activities in liver and small-intestine of rat and Guinea-pig in-vitro by piperine. Biochem Pharmacol 46(2):229–238

    Article  CAS  PubMed  Google Scholar 

  • Schraufnagel DE, Blasi F, Drummond MB et al (2014) Electronic cigarettes a position statement of the forum of international respiratory societies. Am J Respir Crit Care Med 190(6):611–618

    Article  PubMed  Google Scholar 

  • U.S. Department of Health and Human Services PHSOotSGR (2016) E-cigarette use among youth and young adults: a report of the surgeon general. https://www.surgeongeneral.gov/library/2016ecigarettes/index.html

  • Vivekanandarajah A, Waters KA, Machaalani R (2019) Cigarette smoke exposure effects on the brainstem expression of nicotinic acetylcholine receptors (nAChRs), and on cardiac, respiratory and sleep physiologies. Respir Physiol Neurobiol 259:1–15

    Article  CAS  PubMed  Google Scholar 

  • Wang MX, Liu YL, Yang Y et al (2015a) Nuciferine restores potassium oxonate-induced hyperuricemia and kidney inflammation in mice. Eur J Pharmacol 747:59–70

    Article  CAS  PubMed  Google Scholar 

  • Wang XF, Cheang WS, Yang HX et al (2015b) Nuciferine relaxes rat mesenteric arteries through endothelium-dependent and -independent mechanisms. Br J Pharmacol 172(23):5609–5618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wennig R (2009) Back to the roots of modern analytical toxicology: Jean Servais Stas and the Bocarme murder case. Drug Test Anal 1(4):153–155

    Article  CAS  PubMed  Google Scholar 

  • Wiedenfeld H, Roeder E, Bourauel T, Edgar J (2008) Pyrrolizidine alkaloids (PAs) structure and toxicity. Bonn University Press, Bonn

    Google Scholar 

  • Yan MZ, Chang Q, Zhong Y et al (2015) Lotus leaf alkaloid extract displays sedative–hypnotic and anxiolytic effects through GABAA receptor. J Agric Food Chem 63(42):9277–9285

    Article  CAS  PubMed  Google Scholar 

  • Ye LH, He XX, Kong LT et al (2014) Identification and characterization of potent CYP2D6 inhibitors in lotus leaves. J Ethnopharmacol 153(1):190–196

    Article  CAS  PubMed  Google Scholar 

  • Zhang XY, Wang XY, Wu TT et al (2015) Isoliensinine induces apoptosis in triple-negative human breast cancer cells through ROS generation and p38 MAPK/JNK activation. Sci Rep 5:12579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng LL, Cao YW, Liu S, Peng ZY, Zhang SD (2014) Neferine inhibits angiotensin II-induced rat aortic smooth muscle cell proliferation predominantly by downregulating fractalkine gene expression. Exp Ther Med 8(5):1545–1550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Financial support by the National Natural Science Foundation of China (81872754) and the Research Fund of University of Macau (MYRG2017-00109-ICMS and MYRG2018-00037-ICMS) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ligen Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Chen, C., Lin, L. (2020). Alkaloids in Diet. In: Xiao, J., Sarker, S., Asakawa, Y. (eds) Handbook of Dietary Phytochemicals. Springer, Singapore. https://doi.org/10.1007/978-981-13-1745-3_36-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-1745-3_36-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-1745-3

  • Online ISBN: 978-981-13-1745-3

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics