Skip to main content

Saponins in Food

  • Living reference work entry
  • First Online:
Handbook of Dietary Phytochemicals

Abstract

Saponins belong to the group of plant glycosides widely distributed in more than 100 families of both wild and cultivated plants and in some marine organisms. They consist of the steroidal or triterpene hydrophobic aglycone and one to three sugar chains (hydrophilic part) attached by ester or ether linkage. Based on number of chains attached to the aglycone, they can be categorized as monodesmosides, bidesmosides, or tridesmosides. To this group of compounds, the glycoalkaloids are also included. Some saponins may contain in their structures (in aglycone part or in sugar chain) glucuronic acid, what makes them acidic. A big number of structurally divergent compounds have been described. Their structures and concertation can be different even in the organs (roots, rhizomes, stems, bark, leaves, seeds, and fruits) of the same plant species. Depending on the structure, they express different biological activities. Triterpenoid saponins can be found in many legumes (alfalfa, soybean, chickpeas, beans, peanuts, broad beans, kidney beans, and lentils), ginseng roots, sunflower seeds, horse chestnut, liquorice roots, spinach leaves, tea leaves, quillaja bark, quinoa seeds, sugar beet, or alliums species. Steroidal saponins can be found in oats, Yucca, tomato seeds, yam, fenugreek seeds, ginseng roots, asparagus, aubergine, or capsicum peppers. Glycoalkaloids are characteristic compounds mostly for Soalanaceae species. In general these compounds show no or little toxicity and do not seem to be of hazard for consumers. Depending on the structure, they express different biological activities. In general, saponins have been related to immunostimulatory, hypocholesterolemic, antitumor, anti-inflammatory, antibacterial, antiviral, antifungal, and antiparasitic activities. The major feature of these compounds is their sterol affinity, which seem to be responsible for most of activities they express. When consumed they may provide different health benefits, out of which cholesterol reducing activity is most pronounced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Barakat H, Reim V, Rohn S (2015) Stability of saponins from chickpea, soy and faba beans in vegetarian, broccoli-based bars subjected to different cooking techniques. Food Res Int 76:142–149

    Article  CAS  Google Scholar 

  • Böttcher S, Drusch S (2017) Saponins – self-assembly and behavior at aqueous interfaces. Adv Colloid Interf Sci 243:105–113

    Article  CAS  Google Scholar 

  • Bushway RJ, Perkins LB, Paradis LR, Vanderpant S (1994) High-performance liquid chromatographic determination of the tomato glycoalkaloid, tomatine, in green and red tomatoes. J Agric Food Chem 42:2824–2829

    Article  CAS  Google Scholar 

  • Chitisankul WT, Takada Y, Takahashi Y, Ito A, Itabashi M, Varanyanond W, Kikuchi A, Ishimoto M, Tsukamoto C (2018) Saponin composition complexities in hypocotyls and cotyledons of nine soybean varieties. LWT Food Sci Technol 89:93–103

    Article  CAS  Google Scholar 

  • Cieślak A, Szumacher-Strabel M, Stochmal A, Oleszek W (2013) Plant components with specific activities against rumen methanogens. Animal 7(s2):253–265

    Article  PubMed  Google Scholar 

  • Corinna D, Hofmann T (2012) Structural and sensory characterization of bitter tasting steroidal saponins from asparagus spears (Asparagus officinalis L.). J Agric Food Chem 60:11889–11900

    Article  CAS  Google Scholar 

  • Francis G, Kerem Z, Makkar HP, Becker K (2002) The biological action of saponins in animal systems: a review. Br J Nutr 88(6):587–605

    Article  CAS  PubMed  Google Scholar 

  • Friedman M (2006) Potato glycoalkaloids and metabolites: roles in the plant and in the diet. J Agric Food Chem 54(23):8655–8681

    Article  CAS  PubMed  Google Scholar 

  • Gauthier C, Legault J, Girard-Lalancette K, Mshvildadze V, Pichette A (2009) Haemolytic activity, cytotoxicity and membrane cell permeabilization of semi-synthetic and natural lupane-and oleanane-type saponins. Bioorg Med Chem 17(5):2002–2008

    Article  CAS  PubMed  Google Scholar 

  • George AJ (1965) Legal status and toxicity of saponins. Food Cosmet Toxicol 3:85–91

    Article  CAS  PubMed  Google Scholar 

  • Güçlü-Üstündağ Ö, Mazza G (2007) Saponins: properties, applications and processing. Crit Rev Food Sci Nutr 47(3):231–258

    Article  PubMed  CAS  Google Scholar 

  • Ha TJ, Lee BW, Park KH, Jeong SH, Kim HT, Ko JM, Baek IY, Lee JH (2014) Rapid characterisation and comparison of saponin profiles in the seeds of Korean Leguminous species using ultra performance liquid chromatography with photodiode array detector and electrospray ionisation/mass spectrometry (UPLC–PDA–ESI/MS) analysis. Food Chem 146:270–277

    Article  CAS  PubMed  Google Scholar 

  • Hierro JN, Herreraa T, Fornaria T, Regleroa G, Martina D (2018) The gastrointestinal behavior of saponins and its significance for their bioavailability and bioactivities. J Funct Foods 40:484–497

    Article  CAS  Google Scholar 

  • Hostettmann KA, Marston A (1995) Saponins. Chemistry and pharmacology of natural products. Cambridge University Press, Cambridge

    Google Scholar 

  • ISI Web of Knowledge, Derwent Innovations Index Database (2018) Thomson Reuters. http://apps.webofknowledge.com/DIIDW_GeneralSearch_input.do?product=DIIDW&SID=F2a1rb5i7gtYUQZrOi6&search_mode=GeneralSearch. Accessed 20 Oct 18

  • Jurzysta M. (1984) Transformation of soyasapogenol B into soyasapogenols C, D and F under acidic conditions. In: 14th symposium on chemical natural products, poznañ, p 127

    Google Scholar 

  • Kawano K, Sato H, Sakamura A (1977) Isolation and structure of furostanol saponin in asparagus edible shoots. Agric Biol Chem 41(1):1–8

    CAS  Google Scholar 

  • Kitagawa I, Yoshikawa M, Wang HK, Saito M, Tosirusuk V, Fujiwara T, Tomita KI (1982) Revised structures of soyasapogenols A, B and E, oleane-sapogenols from soybean. Structures of soyasaponins I, II and III. Chem Pharm Bull 30:2294–2297

    Article  CAS  Google Scholar 

  • Kitagawa I, Wang HK, Saito M, Yoshikawa M (1983a) Saponin and sapogenol. XXXII. Chemical constituents of the seeds of Vigna angularis (Willd) Ohwi et Ohashi. II. Azukisaponins I, II, III and IV. Chem Pharm Bull 31:674–678

    Article  CAS  Google Scholar 

  • Kitagawa I, Wang HK, Saito M, Yoshikawa M (1983b) Saponin and sapogenol. XXXII. Chemical constituents of the seeds of Vigna angularis (Willd) Ohwi et Ohashi. III. Azukisaponins V and VI. Chem Pharm Bull 31:683–687

    Article  CAS  Google Scholar 

  • Kitagawa I, Yoshikawa M, Hayashi T, Taniyama T (1984) Quantitative determination of soyasaponins in soybeans of various origins and soybean products by means of high performance liquid chromatography. Yakugaku Zassi 104:275–279

    Article  CAS  Google Scholar 

  • Kondamudi Y, Smith JK, McDougal OM (2017) Determination of glycoalkaloids in potatoes and potato products by microwave assisted extraction. Am J Potato Res 94(2):153–159

    Article  CAS  Google Scholar 

  • Kostova I, Dinchev D, Rentsch GH, Dimitrov V, Ivanova A (2002) Two new sulfated furostanol saponins from Tribulus terrestris. Zeitschrift für Naturforschung C 57(1–2):33–38

    Article  CAS  Google Scholar 

  • Kozukue N, Han JS, Lee KR, Friedman M (2004) Dehydrotomatine and α-tomatine content in tomato fruits and vegetative plant tissues. J Agric Food Chem 52(7):2079–2083

    Article  CAS  PubMed  Google Scholar 

  • Lanzotti V (2005) Bioactive saponins from Allium and Aster plants. Phytochem Rev 4:95–110

    Article  CAS  Google Scholar 

  • Lanzotti V (2012) Bioactive polar natural compounds from garlic and onions. Phytochem Rev 1:179–196

    Article  CAS  Google Scholar 

  • Lásztity R, Hidvégi M, Bata Á (1998) Saponins in food. Food Rev Int 14(4):371–390

    Article  Google Scholar 

  • Li Y, Zhang Y, Zhu C-Y (2017) Pharmacokinetics and correlation between in vitro release and in vivo absorption of bio-adhesive pellets of panax notoginseng saponins. Chin J Nat Med 15(2):0142–0151

    Google Scholar 

  • Mikołajczyk-Bator K, Pawlak S (2016) The effect of thermal treatment on antioxidant capacity and pigment contents in separated betalain fractions. Acta Sci Pol Technol Aliment 15(3):257–265

    Article  PubMed  Google Scholar 

  • Mithöfer A, Jakupovic J, Weiler EW (1999) A triterpenoid glycoside from Spinacia oleracea. Nat Prod Lett 14(1):5–10

    Article  Google Scholar 

  • Mroczek A, Kapusta I, Janda B, Janiszowska W (2012) Triterpene saponin content in the roots of red beet (Beta vulgaris L.) cultivars. J Agric Food Chem 60:12397–12402

    Article  CAS  PubMed  Google Scholar 

  • Oakenfull D (1981) Saponins in food – a review. Food Chem 7(1):19–40

    Article  CAS  Google Scholar 

  • Oleszek W (1998) Composition and quantitation of saponins in alfalfa (Medicago sativa L.) seedlings. J Agric Food Chem 46(3):960–962

    Article  CAS  Google Scholar 

  • Oleszek WA (2000) Saponins. In: Naidu AS (ed) Natural food antimicrobial systems. CRC Press, Inc., Boca Raton, pp 295–324

    Google Scholar 

  • Oleszek W, Hamed A (2010) Saponin based surfactants. In: Kjellin M, Johansson I (eds) Surfactants from renewable resources. Wiley, Hoboken, pp 239–249

    Chapter  Google Scholar 

  • Oleszek W, Jurzysta M, Płoszyński M, Colquhoun IJ, Price KR, Fenwick GR (1992) Zanhic acid tridesmoside and other dominant saponins from alfalfa (Medicago sativa L.) aerial parts. J Agric Food Chem 40:191–196

    Article  CAS  Google Scholar 

  • Oleszek W, Nowacka J, Gee JM, Wortley GM, Johnson IT (1994) Effects of some purified alfalfa (Medicago sativa) saponins on transmural potential difference in mammalian small intestine. J Sci Food Agric 65:35–39

    Article  CAS  Google Scholar 

  • Önning G, Asp NG, Sivik B (1993) Saponin content in different oat varieties and in different fractions of oat grain. Food Chem 48:251–254

    Article  Google Scholar 

  • Patra JK, Das G, Lee S, Kang SS, Shin HS (2018) Selected commercial plants: a review of extraction and isolation of bioactive compounds and their pharmacological market value. Trends Food Sci Technol 82:89–109

    Article  CAS  Google Scholar 

  • Pecio L, Jędrejek D, Masullo M, Piacente S, Oleszek W, Stochmal A (2012) Revised structures of avenacosides A and B and a new sulfated saponin from Avena sativa L. Magn Reson Chem 50:755–758

    Article  CAS  PubMed  Google Scholar 

  • Pecio L, Wawrzyniak-Szolkowska A, Oleszek W, Stochmal A (2013) Rapid analysis of avenacosides in grain and husks of oats by UPLC–TQ–MS. Food Chem 141:2300–2304

    Article  CAS  PubMed  Google Scholar 

  • Serventi L, Chitchumroonchokchai C, Riedl KM, Kerem Z, Berhow MA, Vodovotz Y (2013) Saponins from soy and chickpea: stability during beadmaking and in vitro bioaccessibility. J Agric Food Chem 61(27):6703–6710

    Article  CAS  PubMed  Google Scholar 

  • Shiraiwa M, Harada K, Okubo K (1991a) Composition and structure of group-B saponin in soybean seed. Agric Biol Chem 55:911–917

    CAS  PubMed  Google Scholar 

  • Shiraiwa M, Kudou S, Shimoyamada M, Harada K, Okubo K (1991b) Composition and structure of “group A saponin” in soybean seed. Agric Biol Chem 55:315–322

    CAS  Google Scholar 

  • Sobolewska D, Michalska K, Podolak I, Grabowska K (2016) Steroidal saponins from the genus Allium. Phytochem Rev 15:1–35

    Article  CAS  PubMed  Google Scholar 

  • Sucharzewska D, Stochmal A, Oleszek W (2003) The effect of Yucca schidigera extract on the physical structure and on oxidative stability of sugar-candy foam products. Lebensm Wiss Technol 36:347–351

    Article  CAS  Google Scholar 

  • Szumacher-Strabel M, Cieślak A (2010) Potential of phytofactors to mitigate rumen ammonia and methane production. J Anim Feed Sci 19(3):319–337

    Article  Google Scholar 

  • Tschesche R, Rehkamper H, Wulff G (1969) Uber die Saponine des Spinates (Spinacia oleracea L.). Leibigs Ann Chem 726:125

    Article  CAS  Google Scholar 

  • Tsukamoto C, Yoshiki Y (2006) Soy saponin. In: Sugano M (ed) Soy in health and disease prevention. CRC Press, Boca Roton

    Google Scholar 

  • Yoshikawa M, Murakami T, Kadoya M, Matsuda H, Muraoka O, Yamahara J, Murakami N (1996) Medicinal foodstuffs. III. Sugar beet.(1): hypoglycemic oleanolic acid oligoglycosides, betavulgarosides, I, II, III, and IV, from the root of Beta vulgaris L.(Chenopodiaceae). Chem Pharm Bull 44(6):1212–1217

    Article  CAS  Google Scholar 

  • Zhao D (2016) Challenges associated with elucidating the mechanisms of the hypocholesterolaemic activity of saponins. J Funct Foods 23:52–65

    Article  CAS  Google Scholar 

  • Zhu Z, Wen Y, Yi J, Cao Y, Liu F, McClements DJ (2019) Comparison of natural and synthetic surfactants at forming and stabilizing nanoemulsions: Tea saponin, Quillaja saponin, and Tween 80. J Colloid Interface Sci 536:80–87

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Polish National Science Centre. Grant no.2014/15/N/NZ9/01127.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wieslaw Oleszek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Oleszek, M., Oleszek, W. (2020). Saponins in Food. In: Xiao, J., Sarker, S., Asakawa, Y. (eds) Handbook of Dietary Phytochemicals. Springer, Singapore. https://doi.org/10.1007/978-981-13-1745-3_34-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-1745-3_34-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-1745-3

  • Online ISBN: 978-981-13-1745-3

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics