Skip to main content

Supramolecular Functional Complexes Constructed by Orthogonal Self-Assembly

  • Living reference work entry
  • First Online:
Handbook of Macrocyclic Supramolecular Assembly

Abstract

Supramolecular functional complexes (SFCs) fabricated by orthogonal self-assembly based on macrocyclic host–guest and other non-covalent interactions have been attracted considerable interest due to their fascinating chemical and physical properties and potential applications. Macrocyclic host–guest interactions play a very important role in supramolecular chemistry and will continue to develop because an increasing number of macrocycles are constantly being created including crown ethers, cyclodextrins, cucurbiturils, calixarenes, “blue box,” and pillararenes. Therefore, SFCs constructed simultaneously by host–guest interaction and other types of highly specific, noninterfering interactions in an orthogonal way have broad applications in the fields of molecular machines, supramolecular polymers, electronics, soft materials, etc. In this chapter, we will discuss the recent development of SFCs constructed by orthogonal self-assembly involving host–guest interactions. Specifically, we classify the macrocycle-based SFCs depending on the types of the non-covalent interactions, such as hydrogen bonding, metal–ligand coordination, π–π interaction, etc. The construction strategy, intriguing properties, and applications of these specific SFCs are mainly focused.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Wei P, Yan X, Huang F (2015) Supramolecular polymers constructed by orthogonal self-assembly based on host-guest and metal-ligand interactions. Chem Soc Rev 44(3):815–832. https://doi.org/10.1039/C4CS00327F

    Article  CAS  PubMed  Google Scholar 

  2. Hu X-Y, Xiao T, Lin C, Huang F, Wang L (2014) Dynamic supramolecular complexes constructed by orthogonal self-assembly. Acc Chem Res 47(7):2041–2051. https://doi.org/10.1021/ar5000709

    Article  CAS  PubMed  Google Scholar 

  3. Wong C-H, Zimmerman SC (2013) Orthogonality in organic, polymer, and supramolecular chemistry: from Merrifield to click chemistry. Chem Commun 49(17):1679–1695

    Article  CAS  Google Scholar 

  4. Saha ML, De S, Pramanik S, Schmittel M (2013) Orthogonality in discrete self-assembly - survey of current concepts. Chem Soc Rev 42(16):6860–6909. https://doi.org/10.1039/c3cs60098j

    Article  CAS  PubMed  Google Scholar 

  5. Li S-L, Xiao T, Lin C, Wang L (2012) Advanced supramolecular polymers constructed by orthogonal self-assembly. Chem Soc Rev 41(18):5950–5968. https://doi.org/10.1039/C2CS35099H

    Article  CAS  PubMed  Google Scholar 

  6. Watson JD, Crick FHC (1953) Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature 171(4356):737–738

    Article  CAS  Google Scholar 

  7. Yakovchuk P, Protozanova E, Frank-Kamenetskii MD (2006) Base-stacking and base-pairing contributions into thermal stability of the DNA double helix. Nucleic Acids Res 34(2):564–574. https://doi.org/10.1093/nar/gkj454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. McLaughlin CK, Hamblin GD, Sleiman HF (2011) Supramolecular DNA assembly. Chem Soc Rev 40(12):5647–5656. https://doi.org/10.1039/C1CS15253J

    Article  CAS  PubMed  Google Scholar 

  9. Zhang M, Yan X, Huang F, Niu Z, Gibson HW (2014) Stimuli-responsive host-guest systems based on the recognition of cryptands by organic guests. Acc Chem Res 47(7):1995–2005. https://doi.org/10.1021/ar500046r

    Article  CAS  PubMed  Google Scholar 

  10. Guo D-S, Liu Y (2014) Supramolecular chemistry of p-sulfonatocalix[n]arenes and its biological applications. Acc Chem Res 47(7):1925–1934. https://doi.org/10.1021/ar500009g

    Article  CAS  PubMed  Google Scholar 

  11. Niu Z, Gibson HW (2009) Polycatenanes. Chem Rev 109(11):6024–6046. https://doi.org/10.1021/cr900002h

    Article  CAS  PubMed  Google Scholar 

  12. Huck WTS, Hulst R, Timmerman P, van Veggel FCJM, Reinhoudt DN (1997) Noncovalent synthesis of nanostructures: combining coordination chemistry and hydrogen bonding. Angew Chem Int Ed 36(9):1006–1008. https://doi.org/10.1002/anie.199710061

    Article  CAS  Google Scholar 

  13. Wang XQ, Li WJ, Wang W, Yang HB (2018) Heterorotaxanes. Chem Commun 54(95):13303–13318. https://doi.org/10.1039/c8cc07283c

    Article  CAS  Google Scholar 

  14. Huang Z, Yang L, Liu Y, Wang Z, Scherman OA, Zhang X (2014) Supramolecular polymerization promoted and controlled through self-sorting. Angew Chem Int Ed 53(21):5351–5355. https://doi.org/10.1002/anie.201402817

    Article  CAS  Google Scholar 

  15. Zhang Z-J, Zhang H-Y, Wang H, Liu Y (2011) A twin-axial hetero[7]rotaxane. Angew Chem Int Ed 50(46):10834–10838. https://doi.org/10.1002/anie.201105375

    Article  CAS  Google Scholar 

  16. Wang F, Han C, He C, Zhou Q, Zhang J, Wang C, Li N, Huang F (2008) Self-sorting organization of two heteroditopic monomers to supramolecular alternating copolymers. J Am Chem Soc 130(34):11254–11255. https://doi.org/10.1021/ja8035465

    Article  CAS  PubMed  Google Scholar 

  17. Jiang W, Winkler HDF, Schalley CA (2008) Integrative self-sorting: construction of a cascade-stoppered hetero[3]rotaxane. J Am Chem Soc 130(42):13852–13853. https://doi.org/10.1021/ja806009d

    Article  CAS  PubMed  Google Scholar 

  18. Kang Y, Tang X, Cai Z, Zhang X (2016) Supra-amphiphiles for functional assemblies. Adv Funct Mater 26(48):8920–8931. https://doi.org/10.1002/adfm.201602998

    Article  CAS  Google Scholar 

  19. Tokunaga Y, Seo T (2002) The contribution of complementary hydrogen bonding to supramolecular structure. Chem Commun 2002(9):970–971

    Article  Google Scholar 

  20. Wang X-Z, Li X-Q, Shao X-B, Zhao X, Deng P, Jiang X-K, Li Z-T, Chen Y-Q (2003) Selective rearrangements of quadruply hydrogen-bonded dimer driven by donor–acceptor interaction. Chem Eur J 9(12):2904–2913. https://doi.org/10.1002/chem.200204513

    Article  CAS  PubMed  Google Scholar 

  21. Xiao T, Li S-L, Zhang Y, Lin C, Hu B, Guan X, Yu Y, Jiang J, Wang L (2012) Novel self-assembled dynamic [2]catenanes interlocked by the quadruple hydrogen bonding ureidopyrimidinone motif. Chem Sci 3(5):1417–1421

    Article  CAS  Google Scholar 

  22. Li S-L, Xiao T, Wu Y, Jiang J, Wang L (2011) New linear supramolecular polymers that are driven by the combination of quadruple hydrogen bonding and crown ether-paraquat recognition. Chem Commun 47(24):6903–6905. https://doi.org/10.1039/C1CC12003D

    Article  CAS  Google Scholar 

  23. Li S-L, Xiao T, Hu B, Zhang Y, Zhao F, Ji Y, Yu Y, Lin C, Wang L (2011) Formation of polypseudorotaxane networks by cross-linking the quadruple hydrogen bonded linear supramolecular polymers via bisparaquat molecules. Chem Commun 47:10755

    Article  CAS  Google Scholar 

  24. Xiao T, Feng X, Wang Q, Lin C, Wang L, Pan Y (2013) Switchable supramolecular polymers from the orthogonal self-assembly of quadruple hydrogen bonding and benzo-21-crown-7-secondary ammonium salt recognition. Chem Commun 49(75):8329–8331. https://doi.org/10.1039/C3CC44525A

    Article  CAS  Google Scholar 

  25. Ogoshi T, Yamagishi T-A, Nakamoto Y (2016) Pillar-shaped macrocyclic hosts pillar[n]arenes: new key players for supramolecular chemistry. Chem Rev 116(14):7937–8002. https://doi.org/10.1021/acs.chemrev.5b00765

    Article  CAS  PubMed  Google Scholar 

  26. Guan Y, Ni M, Hu X, Xiao T, Xiong S, Lin C, Wang L (2012) Pillar[5]arene-based polymeric architectures constructed by orthogonal supramolecular interactions. Chem Commun 48(68):8529–8531

    Article  CAS  Google Scholar 

  27. Hu X-Y, Wu X, Wang S, Chen D, Xia W, Lin C, Pan Y, Wang L (2013) Pillar[5]arene-based supramolecular polypseudorotaxane polymer networks constructed by orthogonal self-assembly. Polym Chem 4(16):4292–4297. https://doi.org/10.1039/C3PY00575E

    Article  CAS  Google Scholar 

  28. Hu X-Y, Zhang P, Wu X, Xia W, Xiao T, Jiang J, Lin C, Wang L (2012) Pillar[5]arene-based supramolecular polypseudorotaxanes constructed from quadruple hydrogen bonding. Polym Chem 3(11):3060–3063. https://doi.org/10.1039/C2PY20285A

    Article  CAS  Google Scholar 

  29. Hu X-Y, Wu X, Duan Q, Xiao T, Lin C, Wang L (2012) Novel pillar[5]arene-based dynamic polyrotaxanes interlocked by the quadruple hydrogen bonding ureidopyrimidinone motif. Org Lett 14(18):4826–4829. https://doi.org/10.1021/ol302149t

    Article  CAS  PubMed  Google Scholar 

  30. Ji X, Jie K, Zimmerman SC, Huang F (2015) A double supramolecular crosslinked polymer gel exhibiting macroscale expansion and contraction behavior and multistimuli responsiveness. Polym Chem 6(11):1912–1917. https://doi.org/10.1039/C4PY01715C

    Article  CAS  Google Scholar 

  31. Fu X, Gu R-R, Zhang Q, Rao S-J, Zheng X-L, Qu D-H, Tian H (2016) Phototriggered supramolecular polymerization of a [c2]daisy chain rotaxane. Polym Chem 7(12):2166–2170. https://doi.org/10.1039/C6PY00309E

    Article  CAS  Google Scholar 

  32. Goujon A, Mariani G, Lang T, Moulin E, Rawiso M, Buhler E, Giuseppone N (2017) Controlled sol–gel transitions by actuating molecular machine based supramolecular polymers. J Am Chem Soc 139(13):4923–4928. https://doi.org/10.1021/jacs.7b00983

    Article  CAS  PubMed  Google Scholar 

  33. Datta S, Saha ML, Stang PJ (2018) Hierarchical assemblies of supramolecular coordination complexes. Acc Chem Res 51(9):2047–2063. https://doi.org/10.1021/acs.accounts.8b00233

    Article  CAS  PubMed  Google Scholar 

  34. Li J, Wei P, Wu X, Xue M, Yan X (2013) Three protocols for the formation of a [3]pseudorotaxane via orthogonal cryptand-based host-guest recognition and coordination-driven self-assembly. Org Lett 15(19):4984–4987. https://doi.org/10.1021/ol402294q

    Article  CAS  PubMed  Google Scholar 

  35. Wei P, Li J, Yan X, Zhou Q (2014) Metallosupramolecular poly[2]pseudorotaxane constructed by metal coordination and crown-ether-based molecular recognition. Org Lett 16(1):126–129. https://doi.org/10.1021/ol403111e

    Article  CAS  PubMed  Google Scholar 

  36. Xing H, Wei P, Yan X (2014) Supramolecular side-chain poly[2]pseudorotaxanes formed by orthogonal coordination-driven self-assembly and crown-ether-based host-guest interactions. Org Lett 16(11):2850–2853. https://doi.org/10.1021/ol500983k

    Article  CAS  PubMed  Google Scholar 

  37. Yan X, Xu D, Chi X, Chen J, Dong S, Ding X, Yu Y, Huang F (2012) A multiresponsive, shape-persistent, and elastic supramolecular polymer network gel constructed by orthogonal self-assembly. Adv Mater 24:362–369. https://doi.org/10.1002/adma.201103220

    Article  CAS  PubMed  Google Scholar 

  38. Yan X, Xu D, Chen J, Zhang M, Hu B, Yu Y, Huang F (2013) A self-healing supramolecular polymer gel with stimuli-responsiveness constructed by crown ether based molecular recognition. Polym Chem 4(11):3312–3322. https://doi.org/10.1039/C3PY00283G

    Article  CAS  Google Scholar 

  39. Wei PF, Li SJ, Zhang YY, Yu YH, Yan XZ (2014) Responsive cross-linked supramolecular polymer network: hierarchical supramolecular polymerization driven by cryptand-based molecular recognition and metal coordination. Polym Chem 5(13):3972–3976. https://doi.org/10.1039/c4py00309h

    Article  CAS  Google Scholar 

  40. Yan XZ, Cook TR, Pollock JB, Wei PF, Zhang YY, Yu YH, Huang FH, Stang PJ (2014) Responsive supramolecular polymer metallogel constructed by orthogonal coordination-driven self-assembly and host/guest interactions. J Am Chem Soc 136(12):4460–4463. https://doi.org/10.1021/ja412249k

    Article  CAS  PubMed  Google Scholar 

  41. Zhu LL, Lu MQ, Zhang QW, Qu DH, Tian H (2011) Construction of polypseudorotaxane from low-molecular weight monomers via dual noncovalent interactions. Macromolecules 44(11):4092–4097. https://doi.org/10.1021/Ma200825t

    Article  CAS  Google Scholar 

  42. Zhang W, Zhang H-Y, Zhang Y-H, Liu Y (2015) Fluorescent supramolecular polypseudorotaxane architectures with Ru(II)/tri(bipyridine) centers as multifunctional DNA reagents. Chem Commun 51(89):16127–16130. https://doi.org/10.1039/C5CC07216F

    Article  CAS  Google Scholar 

  43. Li Z-Y, Zhang Y, Zhang C-W, Chen L-J, Wang C, Tan H, Yu Y, Li X, Yang H-B (2014) Cross-linked supramolecular polymer gels constructed from discrete multi-pillar[5]arene metallacycles and their multiple stimuli-responsive behavior. J Am Chem Soc 136(24):8577–8589. https://doi.org/10.1021/ja413047r

    Article  CAS  PubMed  Google Scholar 

  44. Wang S, Wang Y, Chen Z, Lin Y, Weng L, Han K, Li J, Jia X, Li C (2015) The marriage of endo-cavity and exo-wall complexation provides a facile strategy for supramolecular polymerization. Chem Commun 51(16):3434–3437. https://doi.org/10.1039/C4CC08820D

    Article  CAS  Google Scholar 

  45. Liu P, Li Z, Shi B, Liu J, Zhu H, Huang F (2018) Formation of linear side-chain polypseudorotaxane with supramolecular polymer backbone through neutral halogen bonds and pillar[5]arene-based host-guest interactions. Chem Eur J 24(17):4264–4267. https://doi.org/10.1002/chem.201800312

    Article  CAS  PubMed  Google Scholar 

  46. Wu J, Fang LW-Y, Hou J-L, Li C, Wu Z-Q, Jiang X-K, Li Z-T, Yu Y-H (2007) Dynamic [2]catenanes based on a hydrogen bonding-mediated bis-zinc porphyrin foldamer tweezer: a case study. J Org Chem 72(8):2897–2905. https://doi.org/10.1021/jo062523g

    Article  CAS  PubMed  Google Scholar 

  47. Shi Y, Yang Z, Liu H, Li Z, Tian Y, Wang F (2015) Mechanically linked poly[2]rotaxanes constructed via the hierarchical self-assembly strategy. ACS Macro Lett 4(1):6–10. https://doi.org/10.1021/mz500659f

    Article  CAS  Google Scholar 

  48. Wei P, Yan X, Cook TR, Ji X, Stang PJ, Huang F (2016) Supramolecular copolymer constructed by hierarchical self-assembly of orthogonal host-guest, H-bonding, and coordination interactions. ACS Macro Lett 5(6):671–675. https://doi.org/10.1021/acsmacrolett.6b00286

    Article  CAS  Google Scholar 

  49. Wang Q, Zhang P, Li Y, Tian L, Cheng M, Lu F, Lu X, Fan Q, Huang W (2017) Neutral linear supramolecular polymers constructed by three different interactions. RSC Adv 7(47):29364–29367. https://doi.org/10.1039/C7RA05351G

    Article  CAS  Google Scholar 

  50. Wang Q, Cheng M, Tian L, Fan Q, Jiang J (2017) Supramolecular polymers based on a pillar[5]arene-fused cryptand: design, fabrication and degradation accompanied by a fluorescence change. Polym Chem 8(39):6058–6063. https://doi.org/10.1039/C7PY01096F

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao-Qiang Sun or Leyong Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Xiao, T., Sun, XQ., Wang, L. (2019). Supramolecular Functional Complexes Constructed by Orthogonal Self-Assembly. In: Liu, Y., Chen, Y., Zhang, HY. (eds) Handbook of Macrocyclic Supramolecular Assembly . Springer, Singapore. https://doi.org/10.1007/978-981-13-1744-6_54-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-1744-6_54-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-1744-6

  • Online ISBN: 978-981-13-1744-6

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics